首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   2篇
污染及防治   2篇
  2021年   1篇
  2014年   1篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The aim of the present study was to comparatively evaluate genomic damage (micronucleus) and cellular death (pyknosis, karyolysis, and karyorrhexis) in exfoliated oral mucosa cells from crack cocaine users by micronucleus test. A total of 30 crack cocaine users and 30 health controls (non-exposed individuals) were included in this setting. Individuals had epithelial cells from cheek mechanically exfoliated, placed in fixative, and dropped in clean slides, which were checked for the above nuclear phenotypes. The results pointed out significant statistical differences (p?<?0.05) of micronucleated oral mucosa cells from crack cocaine users. Exposure to crack cocaine caused an increase of other nuclear alterations closely related to cytotoxicity such as karyolysis in oral cells as well. In summary, these data indicate that crack cocaine is able to induce chromosomal breakage and cellular death in oral mucosa cells of users.  相似文献   
2.
The main principle of the economic approach to a trophic system we propose here lies in assuming that there is a transfer of food along a path between a prey and a predator if, for the predator, the benefits are greater than costs of predation on this path. Conversely, if the costs exceed the benefits, there are no flows. This trade-off, considered all along the food chains of an ecosystem, together with ecological processes (assimilation, somatic maintenance) results in a model coupling mass balance equations (biological constraints) and complementarity principles (Walras’ law). Here is the core of the Network Economics Approach to Trophic Systems (NEATS).  相似文献   
3.
Environmental Science and Pollution Research - Studies have shown that domestic waste collectors are exposed to toxicants including infectious pathogens, which may be linked to their oral health...  相似文献   
4.
‘End-to-end’ models have been adopted in an attempt to capture more of the processes that influence the ecology of marine ecosystems and to make system wide predictions of the effects of fishing and climate change. Here, we develop an end-to-end model by coupling existing models that describe the dynamics of low (ROMS–N2P2Z2D2) and high trophic levels (OSMOSE). ROMS–N2P2Z2D2 is a biogeochemical model representing phytoplankton and zooplankton seasonal dynamics forced by hydrodynamics in the Benguela upwelling ecosystem. OSMOSE is an individual-based model representing the dynamics of several species of fish, linked through opportunistic and size-based trophic interactions. The models are coupled through a two-way size-based predation process. Plankton provides prey for fish, and the effects of predation by fish on the plankton are described by a plankton mortality term that is variable in space and time. Using the end-to-end model, we compare the effects of two-way coupling versus one-way forcing of the fish model with the plankton biomass field. The fish-induced mortality on plankton is temporally variable, in part explained by seasonal changes in fish biomass. Inclusion of two-way feedback affects the seasonal dynamics of plankton groups and usually reduces the amplitude of variation in abundance (top-down effect). Forcing and coupling lead to different predicted food web structures owing to changes in the dominant food chain which is supported by plankton (bottom-up effect). Our comparisons of one-way forcing and two-way coupling show how feedbacks may affect abundance, food web structure and food web function and emphasise the need to critically examine the consequences of different model architectures when seeking to predict the effects of fishing and climate change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号