首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
废物处理   2篇
环保管理   9篇
污染及防治   5篇
评价与监测   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有17条查询结果,搜索用时 718 毫秒
1.
Subsidence is a primary factor governing marsh deterioration in Mississippi River deltaic plain coastal marshes. Marsh surface-water level relationships are maintained primarily through soil organic matter accumulation and inorganic sediment input. In this study we examined the role of soil organic matter accumulation in maintaining marsh elevation in a brackish Spartina patens marsh. Measured rates of soil organic accumulation were compared to plant biomass production and soil respiration (carbon dioxide and methane emission) at the study sites. The study demonstrated the importance of plant biomass production to soil organic carbon accumulation in maintaining viable Spartina patens marshes in sediment-deficient coastal environments. The role of Mississippi River freshwater reintroduction in maintaining conditions for organic accretion is discussed.  相似文献   
2.
Research has shown that aluminum sulfate (alum) and phosphoric acid greatly reduce ammonia (NH3) volatilization from poultry litter; however, no studies have yet reported the effects of these amendments on field-scale composting of poultry litter. The objectives of this study were to (i) evaluate NH3 volatilization from composting litter by measuring both NH3 volatilization and changes in total nitrogen (N) in the litter and (ii) evaluate potential methods of reducing NH3 losses from composting poultry litter. Poultry litter was composted for 68 d the first year and 92 d the second year. Eleven treatments were screened in Year 1, which included an unamended control, a microbial mixture, a microbial mixture with 5% alum incorporated into the litter, 5 and 10% alum rates either surface-applied or incorporated, and 1 and 2% phosphoric acid rates either surface-applied or incorporated. Treatments in Year 2 included an unamended control, a microbial mixture, alum (7% by fresh wt.), and phosphoric acid (1.5% by fresh wt.). Alum and phosphoric acid reduced NH3 volatilization from composting poultry litter by as much as 76 and 54%, respectively. The highest NH3 emission rates were from microbial treatments each year. Compost treated with chemical amendments retained more initial N than all other treatments. Due to the cost and N loss associated with composting poultry litter, composting is not economical from an agronomic perspective compared with the use of fresh poultry litter.  相似文献   
3.
Field studies were conducted in two different marsh habitats in Louisiana coastal wetlands to evaluate the effects of oiling (using South Louisiana Crude oil, SLC) and the effectiveness of a shoreline cleaner (COREXIT 9580) in removing oil from plant canopies. The study sites represented two major marsh habitats; the brackish marsh site was covered by Spartina patens and the freshwater marsh was covered by Sagittaria lancifolia. Field studies were conducted in each habitat using replicated 5.8 m2 plots that were subjected to three treatments; oiled only, oiled + cleaner (cleaner was used 2 days after oiling), and a control. Plant gas exchange responses, survival, growth, and biomass accumulation were measured. Results indicated that oiling led to rapid reductions in leaf gas exchange rates in both species. However, both species in 'oiled + cleaned' plots displayed improved leaf conductance and CO2 fixation rates. Twelve weeks after treatment initiation, photosynthetic carbon fixation in both species had recovered to normal levels. Over the short-term, S. patens showed more sensitivity to oiling with SLC than S. lancifolia as was evident from the data of the number of live shoots and above-ground biomass. Above-ground biomass remained significantly lower than control in S. patens under 'oiled' and 'oiled + cleaned' treatments while it was comparable to controls in S. lancifolia. These studies indicated that the cleaner removed oil from marsh grasses and alleviated the short-term impact of oil on gas exchange function of the study plants. However, use of cleaner had no detectable effects on above-ground biomass production or regeneration at the end of the first growing season in S. patens. Similarly, no beneficial effects of cleaner on carbon fixation and number of live shoots were apparent beyond 12 weeks in S. lancifolia.  相似文献   
4.
The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd(-1) and 25 ngd(-1), respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd(-1) and 32.5 ngd(-1), respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd(-1) and 12.0 ngd(-1) for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd(-1) and 5.35 ngd(-1). Metribuzin degraded faster (12.0 ngd(-1)) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd(-1)).  相似文献   
5.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   
6.
Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.  相似文献   
7.
Yu K  DeLaune RD  Boeckx P 《Chemosphere》2006,65(11):2449-2455
Wetland loss along the Louisiana Gulf coast and excessive nitrate loading into the Gulf of Mexico are interrelated environmental problems. Nitrate removal by soil denitrification activity was studied in a ponded freshwater marsh receiving diverted Mississippi River water for the purpose of reversing or slowing wetland loss. Labeled 15N-nitrate was applied at 3.8 g N m−2 into four replicate study plots after removing above ground vegetation. Nitrogen gas (N2) and nitrous oxide (N2O) emissions from the plots were determined by isotope ratio mass spectrometry (IRMS). Nitrous oxide emissions were also compared with the results determined by gas chromatograph (GC). Results showed that it took 2 weeks to remove the added nitrate with N2O emission occurring over a period of 4 d. The apparent denitrification dynamics were assumed to follow the Michaelis–Menten equation. The maximum denitrification rate and Km value were determined as 12.6 mg N m −2 h−1, and 6.5 mg N l−1, respectively. Therefore the maximum capacity for nitrate removal by the marsh soil would be equivalent to 110 g N m−2 yr−1, with more than 30% of nitrogen gas evolved as N2O. For typical nitrate concentrations in Mississippi River water of about 1 mg N l−1, nitrate would be removed at a rate of 14.7 g N m−2 yr−1 with N2O emission about 1.5%. A denitrification dynamic model showed that the efficiency of nitrate removal would largely depend on the water discharge rate into the ponded wetland. Higher discharge rate will result in less retention time for the water in the marsh where nitrate is denitrified.  相似文献   
8.
Historically, headwater streams received limited protection and were subjected to extensive alteration from logging, farming, mining, and development activities. Despite these alterations, headwater streams provide essential ecological functions. This study examines proxy measures of biogeochemical function across a range of catchment alterations by tracking nutrient cycling (i.e., inputs, processing, and stream loading) with leaf litter fall, leaf litter decomposition, and water quality parameters. Nutrient input and processing remained highest in second growth forests (the least altered areas within the region), while recently altered locations transported higher loads of nutrients, sediments, and conductivity. Biogeochemical functional proxies of C and N input and processing significantly, positively correlated with rapid assessment results (Pearson coefficient = 0.67–0.81; P = 0.002–0.016). Additionally, stream loading equations demonstrate that N and P transport, sediment, and specific conductivity negatively correlated with rapid assessment scores (Pearson coefficient = 0.56–0.81; P = 0.002–0.048). The observed increase in stream loading with lower rapid assessment scores indicates that catchment alterations impact stream chemistry and that rapid assessments provide useful proxy measures of function in headwater ecosystems. Significant differences in nutrient processing, stream loading, water quality, and rapid assessment results were also observed between recently altered (e.g., mined) headwater streams and older forested catchments (Mann–Whitney U = 24; P = 0.01–0.024). Findings demonstrate that biogeochemical function is reduced in altered catchments, and rapid assessment scores respond to a combination of alteration type and recovery time. An analysis examining time and economic requirements of proxy measurements highlights the benefits of rapid assessment methods in evaluating biogeochemical functions.  相似文献   
9.
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   
10.
Mercury entering wetland environments can be microbially methylated to methylmercury. The purpose of this study was to investigate the historical rate of mercury accumulation and distribution of total and methylmercury in soil profile of Louisiana coastal marshes. Two sediment cores each were taken from Louisiana freshwater marsh and salt marsh. Vertical accretion was determined using the 137Cs dating technique. Total and methylmercury were determined with depth in the soil profiles. The fresh marsh soil on a dry weight basis contained more total and methylmercury than the salt marsh. Average vertical accretion rates in freshwater marsh and salt marsh were 0.90 and 0.75 cm year(-1), respectively. Average total and methylmercury content (to a depth of 30 cm) was 140 and 4.19 microg kg(-1) and 80 and 1.34 microg kg(-1) for the fresh and salt marsh, respectively. Due to greater sediment input resulting in a higher bulk density the salt marsh contained more total mercury per m2 (to 30 cm depth) than the fresh water marsh (5340 microg m(-2) as compared to 2929 microg m(-2)). The amount of methylmercury per m2 to depth of 30 cm was approximately the same for each marsh.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号