首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2009年   2篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This paper presents the results of the lidar experiments that have been performed during January 1989 through August 1990 to study the aerosol vertical distributions in the nocturnal atmosphere and their comparison with near-simultaneous aerological soundings for environmental monitoring. During the study period, the aerosol distributions showed significant stratified aerosol layer structures in the lower atmosphere throughout the south-west monsoon season (June-September), while these structures appear to be either erratic or absent during remaining months of the year. In addition, the aerosols present in the lowest air layers up to 200 m are found to contribute significantly (about 40%) to the aerosol loading in the nocturnal boundary layer at the lidar site. The pre-monsoon to winter ratio of mixing depth and ventilation coefficient were found to be 1.11 and 1.62, respectively. Thus the height of the mixed layer (around 350 m) and the associated ventilation coefficients suggest that early winter evenings tend to have higher pollution potential at the experimental site. The results indicate that the lidar technique has the potential to yield good information on the structure of the nocturnal atmosphere which is found to be influenced by the atmospheric stability conditions as revealed by aerological observations.  相似文献   
2.
Below-cloud raindrops acidification simulated with a simple model incorporating gas–liquid equilibriums, gas-phase mass transfer, and catalyzed SO2 oxidation in aqueous phase with uptake of gases and scavenging of particles. Ionic contents of various species in raindrops of different size and pH are computed using one-dimensional time-variant model. The model results are based on SO2 and NH3 absorption and collection of calcium aerosols by raindrops with various collection mechanisms. Aqueous concentrations of (SO2)l and (NH3)l and their ionic components in raindrops are found to be increased with the fall distance from cloud base and decrease of drop size. The overall magnitude of pH enhances with the increase in drop size and transient position of raindrops in the atmosphere below the cloud base. The elevated ionic calcium in raindrops by impaction of calcium aerosols of higher inertia neutralizes the acidic components. Acidic ion contents in smaller droplets are found to be significant and resulted pH of raindrop increases with the size and neutralizing potential of alkaline species. The pH values of rainwater contents of predominant size raindrops in bulk samples corresponding to various rainfall intensities are higher as against the individual non-evaporating smaller raindrops. Results are important in view of the impact of showers on earth surfaces during rain containing large number of smaller droplets as compared to the acidification studies of bulk rainwater.  相似文献   
3.
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a mutli-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March–May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each in Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 μg m?3 over industrial/urban locations to as low as 0.065 μg m?3 over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December–February) to pre-monsoon (March–May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with an afternoon low and a nighttime high; (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL). At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May. This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic. An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号