首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   2篇
污染及防治   2篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2009年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - This is a study of the atmospheric-origin natural radionuclides (7Be and 210Pb) and a wide range of micro- and macro-element accumulation in mosses,...  相似文献   
2.
The concentration of CO2 in air near the ground needs to be predicted to assess environmental and health risks from leaking underground storage. There is an exact solution to the advection–diffusion equation describing trace gases carried by wind when the wind profile is modeled with a power-law dependence on height. The analytical solution is compared with a numerical simulation of the coupled air–ground system with a source of CO2 underground at the water table. The two methods produce similar results far from the boundaries, but the boundary conditions have a strong effect; the simulation imposes boundary conditions at the edge of a finite domain while the analytic solution imposes them at infinity. The reverse seepage from air to ground is shown in the simulation to be very small, and the large difference between time scales suggests that air and ground can be modeled separately, with gas emissions from the ground model used as inputs to the air model.  相似文献   
3.
The International Atomic Energy Agency (IAEA), through the BIOMASS program, has provided a unique international forum for assessing the relative contribution of different sources of uncertainty associated with environmental modeling. The methodology and guidance for dealing with parameter uncertainty have been fairly well developed and quantitative tools such as Monte-Carlo modeling are often recommended. The issue of model uncertainty is still rarely addressed in practical applications and the use of several alternative models to derive a range of model outputs (similar to what was done in IAEA model intercomparisons) is one of a few available techniques. This paper addresses the often overlooked issue of what we call 'modeler uncertainty,' i.e., differences in problem formulation, model implementation and parameter selection originating from subjective interpretation of the problem at hand. This study uses results from the Fruit and Forest Working Groups created under the BIOMASS program (BIOsphere Modeling and ASSessment). The greatest uncertainty was found to result from modelers' interpretation of scenarios and approximations made by modelers. In scenarios that were unclear for modelers, the initial differences in model predictions were as high as seven orders of magnitude. Only after several meetings and discussions about specific assumptions did the differences in predictions by various models merge. Our study shows that the parameter uncertainty (as evaluated by a probabilistic Monte-Carlo assessment) may have contributed over one order of magnitude to the overall modeling uncertainty. The final model predictions ranged between one and three orders of magnitude, depending on the specific scenario. This study illustrates the importance of problem formulation and implementation of an analytic-deliberative process in fate and transport modeling and risk characterization.  相似文献   
4.
This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO2plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO2 flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration.In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO2 and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley–Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration [Silin, D., Patzek, T.W., Benson, S.M., 2007. A Model of Buoyancy-driven Two-phase Countercurrent Fluid Flow. Laboratory Report LBNL-62607. Lawrence Berkeley National Laboratory, Berkeley, CA]. In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture.  相似文献   
5.
Environmental Science and Pollution Research - This study investigates the elemental composition, organic carbon content, pH values, and particle size characteristics in 50 road dust samples...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号