首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
安全科学   1篇
综合类   1篇
基础理论   1篇
污染及防治   1篇
社会与环境   1篇
  2019年   1篇
  2007年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 892 毫秒
1
1.
Novel approach to monitoring of the soil biological quality   总被引:13,自引:0,他引:13  
In this study, a new approach to interpretation of results of the simple microbial biomass and respiration measurements in the soil microbiology is proposed. The principle is based on eight basal and derived microbial parameters, which are standardized and then plotted into sunray plots. The output is visual presentation of one plot for each soil, which makes possible the relative comparison and evaluation of soils in the monitored set. Problems of soil microbiology, such as the lack of benchmarking and reference values, can be avoided by using the proposed method. We found that eight parameters provide enough information for evaluation of the status of the soil microorganisms and, thus, for evaluation of the soil biological quality. The usage of rare parameters (potential respiration PR, ratio of potential and basal respiration PR/BR, biomass-specific potential respiration PR/C(bio), available organic carbon C(ext), and biomass-specific available organic carbon C(ext)/C(bio)) can be recommended, besides classical and well-known parameters (microbial biomass C(bio), basal respiration BR, metabolic coefficient qCO(2)). The combination of basal parameters and derived coefficients can also extend our knowledge about the condition of the soil microorganisms. In monitoring the case studies presented, we observed that soils evaluated to possess good biological quality displayed generally higher values of organic carbon, total nitrogen, clay, and cation exchange capacity. The soils of good biological quality can display higher levels of contaminants. This is probably related with the higher content of organic carbon and clay in these soils.  相似文献   
2.
Measurement of thermal resistance of polymer sheets and fibrous layers is important in various applications including those within the engineering, ergonomics, clothing design and personal protective equipment fields. Standard methods for measurement of thermal resistance of plain materials are generally time consuming, expensive and often require the sample to be cut. Moreover, the temperature difference between the surfaces of both plates surrounding the sample must be known, as well as the sample thickness. This article describes a new measuring device named the Thermoscope. The Thermoscope is not limited by the aforementioned requirements and is able to evaluate the thermal resistance of polymer sheets and textiles by touching the sample on one surface alone. Simultaneously, the other surface is kept in thermal contact with the supporting base. The accuracy of this device was compared with the Alambeta thermal insulation tester. Effects of various base materials on measurement precision were also studied.  相似文献   
3.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   
4.
Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号