首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
废物处理   7篇
环保管理   7篇
综合类   2篇
基础理论   6篇
污染及防治   17篇
评价与监测   3篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2009年   4篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  1972年   1篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
2.
3.
A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to 4-22xcmc for SDS. The vis-a-vis comparison of the two surfactants gave the following results: in the TD case the cHAL biosurfactant at 0.4gL(-1) yields good colour intensity and equal colour uniformity as SDS at 5gL(-1), in the SW case cHAL was found to enhance CWPAH by a factor of 2-4 relative to SDS with one soil, whereas with the other soil the two surfactants behaved similarly. The Cre data, however, showed that both soils absorbed by far more SDS (68-95%) than cHAL (12-54%). The results point out intriguing technological and environmental perspectives deriving from the use of compost isolated biosurfactants in the place of synthetic surfactants.  相似文献   
4.
The FETAX (frog embryo teratogenesis assay Xenopus) is considered a useful bioassay to detect health hazard substances. In the study of the marine toxin palytoxin (PTX), FETAX has revealed evident impacts on embryo mortality, teratogenesis and growth at the two highest (370 and 37nM) concentrations used. Significant mortality rates, peaks in the number of malformed embryos and delays in growth were found, while the total sample number fell by about 80% at the end of the assay with the concentrated dose. The histological analysis to evaluate the morpho-functional induced modifications demonstrated damage to the nervous and muscle tissue, a general reduction in the size of the main inner visceral organs and severe injury to the heart structure in some specimens. No inflammatory response was observed.  相似文献   
5.
Although forest conservation activities, particularly in the tropics, offer significant potential for mitigating carbon (C) emissions, these types of activities have faced obstacles in the policy arena caused by the difficulty in determining key elements of the project cycle, particularly the baseline. A baseline for forest conservation has two main components: the projected land-use change and the corresponding carbon stocks in applicable pools in vegetation and soil, with land-use change being the most difficult to address analytically. In this paper we focus on developing and comparing three models, ranging from relatively simple extrapolations of past trends in land use based on simple drivers such as population growth to more complex extrapolations of past trends using spatially explicit models of land-use change driven by biophysical and socioeconomic factors. The three models used for making baseline projections of tropical deforestation at the regional scale are: the Forest Area Change (FAC) model, the Land Use and Carbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD) model. The models were used to project deforestation in six tropical regions that featured different ecological and socioeconomic conditions, population dynamics, and uses of the land: (1) northern Belize; (2) Santa Cruz State, Bolivia; (3) Paraná State, Brazil; (4) Campeche, Mexico; (5) Chiapas, Mexico; and (6) Michoacán, Mexico. A comparison of all model outputs across all six regions shows that each model produced quite different deforestation baselines. In general, the simplest FAC model, applied at the national administrative-unit scale, projected the highest amount of forest loss (four out of six regions) and the LUCS model the least amount of loss (four out of five regions). Based on simulations of GEOMOD, we found that readily observable physical and biological factors as well as distance to areas of past disturbance were each about twice as important as either sociological/demographic or economic/infrastructure factors (less observable) in explaining empirical land-use patterns. We propose from the lessons learned, a methodology comprised of three main steps and six tasks can be used to begin developing credible baselines. We also propose that the baselines be projected over a 10-year period because, although projections beyond 10 years are feasible, they are likely to be unrealistic for policy purposes. In the first step, an historic land-use change and deforestation estimate is made by determining the analytic domain (size of the region relative to the size of proposed project), obtaining historic data, analyzing candidate baseline drivers, and identifying three to four major drivers. In the second step, a baseline of where deforestation is likely to occur–a potential land-use change (PLUC) map—is produced using a spatial model such as GEOMOD that uses the key drivers from step one. Then rates of deforestation are projected over a 10-year baseline period based on one of the three models. Using the PLUC maps, projected rates of deforestation, and carbon stock estimates, baseline projections are developed that can be used for project GHG accounting and crediting purposes: The final step proposes that, at agreed interval (e.g., about 10 years), the baseline assumptions about baseline drivers be re-assessed. This step reviews the viability of the 10-year baseline in light of changes in one or more key baseline drivers (e.g., new roads, new communities, new protected area, etc.). The potential land-use change map and estimates of rates of deforestation could be re-done at the agreed interval, allowing the deforestation rates and changes in spatial drivers to be incorporated into a defense of the existing baseline, or the derivation of a new baseline projection.  相似文献   
6.
An international inter-laboratory research program investigated the effectiveness of in situ remediation of soils contaminated by cadmium, lead and zinc, measuring changes in soil and soil solution chemistry, plants and soil microbiota. A common soil, from mine wastes in Jasper County MO, was used. The soil was pH 5.9, had low organic matter (1.2 g kg(-1) C) and total Cd, Pb, and Zn concentrations of 92, 5022, and 18 532 mg kg(-1), respectively. Amendments included lime, phosphorus (P), red mud (RM), cyclonic ashes (CA), biosolids (BIO), and water treatment residuals (WTR). Both soil solution and NH4NO3 extractable metals were decreased by all treatments. Phytotoxicity of metals was reduced, with plants grown in P treatments having the highest yields and lowest metal concentration (0.5, 7.2 and 406 mg kg(-1) Cd, Pb, and Zn). Response of soil micro-organisms was similar to plant responses. Phosphorus addition reduced the physiologically based extraction test Pb from 84% of total Pb extracted in the untreated soil to 34.1%.  相似文献   
7.
There is much concern about the social and environmental impacts caused by the economic growth of nations. Thus, to evaluate the socio-economic performance of nations, economists have increasingly addressed matters related to social welfare and the environment. It is within the scope of this context that this work discusses the performance of countries in the BRICS group regarding sustainable development. The objective of this study regards evaluating the efficiency of these countries in transforming productive resources and technological innovation into sustainable development. The proposed objective was achieved by using econometric tools as well as the data envelopment analysis method to then create economic, environmental, and social efficiency rankings for the BRICS countries, which enabled to carry out comparative analyses on the sustainable development of those countries. The results of such assessments can be of interest for more specific scientific explorations.  相似文献   
8.
Since the Neolithic, humans have gathered along coastal plains, where they had to face sea level rise and subsidence without the technology to oppose these processes. When sea level stabilized, approx. 6.000 yr. B.P., coastal colonization was allowed, but where mountain deforestation was carried out river sediment input increased tremendously: settlements were disconnected from the shore and harbour siltation occurred. Shore erosion was a limited process at the time and local solutions were adopted: clay dikes, wood piles, fascinates and rock revetments. Along the Mediterranean, in China and Japan the construction of more complex structures has been documented since the Middle Ages. Further human development, with river bed quarrying, wetland reclamation, dam construction and mountain re-afforestation, favoured a coastal erosion that nowadays threatens most world coasts. From the Venetian “Murazzi” to the recent 114-km-long concrete element defence at the Yellow river delta, shore protection structures evolved following the different needs (protect coastal communication routes, urban and industrial settlements, tourist resorts). Beach nourishment, previously performed with inland quarried materials, is now intensively carried out with marine aggregates. The vernacular solution, left to undeveloped countries, has been recently revaluated by “green engineering”. However, with Sea Level Rise, the debate of whether to defend, accommodate or retreat is open.  相似文献   
9.
Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describe the complexity of environmental biogeochemical reaction mechanisms relies on our analytical ability through the application and developmemnt of advanced spectroscopic techniques. Accompanying this introductory article are nine papers that either review advanced in situ spectroscopic methods or present original research utilizing these techniques. This collection of articles summarizes the challenges facing environmental biogeochemistry, highlights the recent advances and scientific gaps, and provides an outlook into future research that may benefit from the use of in situ spectroscopic approaches. The use of synchrotron-based techniques and other methods are discussed in detail, as is the importance to integrate multiple analytical approaches to confirm results of complementary procedures or to fill data gaps. We also argue that future direction in research will be driven, in addition to recent analytical developments, by emerging factors such as the need for risk assessment of new materials (i.e., nanotechnologies) and the realization that biogeochemical processes need to be investigated in situ under environmentally relevant conditions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号