首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   1篇
综合类   2篇
基础理论   2篇
污染及防治   4篇
  2008年   2篇
  2005年   1篇
  1999年   2篇
  1998年   1篇
  1981年   1篇
  1974年   1篇
  1966年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
2.
Uptake and fate of TNT and RDX by three aquatic and four wetland plants were studied using hydroponic, batch, incubations in explosives-contaminated groundwater amended with [U-14C]-TNT or [U-14C]-RDX in the laboratory. Substrates in which the plants were rooted were also tested. Plants and substrates were collected from a small-scale wetland constructed for explosives removal, and groundwater originated from a local aquifer at the Milan Army Ammunition Plant. This study demonstrated rapid uptake of [U-14C]-TNT derived 14C, concentration at the uptake sites and limited transport in all plants. Per unit of mass, uptake was higher in submersed than in emergent species. Biotransformation of TNT had occurred in all plant treatments after 7-day incubation in 1.6 to 3.4 mg TNT L-i, with labeled amino-dinitrotoluenes (ADNTs), three unidentified compounds unique for plants, and mostly polar products as results. Biotransformation occurred also in the substrates, yielding labeled ADNT, one unidentified compound unique for substrates, and polar products. TNT was not recovered by HPLC in plants and substrates after incubation. Uptake of [U-14C]-RDX derived 14C in plants was slower than that of TNT, transport was substantial, and concentration occurred at sites where new plant material was synthesized. As for TNT, uptake per unit of mass was higher in submersed than in emergent species. Biotransformation of RDX had occurred in all plant treatments after 13-day incubation in 1.5 mg RDX L-1, with one unidentified compound unique for plants, and mostly polar products as results. Biotransformation had occurred also in the substrates, but to a far lower extent than in plants. Substrates and plants had one unidentified 14C-RDX metabolite in common. HPLC analysis confirmed the presence of RDX in most plants and in three out of four substrates at the end of the incubation period.  相似文献   
3.
During live fire training exercises, large amounts of explosives are consumed. Low order detonations of high explosive payloads result in the patchy dispersal of particles of high explosive formulations over large areas of firing range soils. Dissolution of explosives from explosive formulation particles into soil pore water is a controlling factor for transport, fate, and effects of explosive compounds. We developed an empirical method to evaluate soils based on functionally defined effective dissolution rates. An automated Accelerated Solvent Extractor was used to determine the effective elution rates under controlled conditions of RDX and TNT from soil columns containing particles of Comp B. Contrived soils containing selected soil geosorbants and reactive surfaces were used to quantitatively determine the importance of these materials. Natural soils from training ranges of various soil types were also evaluated. The effects of geosorbants on effective elution rates were compound- and sorbent-specific. TNT elution was less than that of RDX and was greatly slowed by humic acid. Iron and iron-bearing clays reduced the effective elution rates of both RDX and TNT. This empirical method is a useful tool for directly generating data on the potential for explosives to leach from firing range soils, to identify general bulk soil characteristics that can be used to predict the potential, and to identify means to engineer soil treatments to mitigate potential transport.  相似文献   
4.
Green macroalgal blooms have substantially altered marine community structure and function, specifically by smothering seagrasses and other primary producers that are critical to commercial fisheries and by creating anoxic conditions in enclosed embayments. Bottom-up factors are viewed as the primary drivers of these blooms, but increasing attention has been paid to biotic controls of species composition. In Washington State, USA, blooms are often dominated by Ulva spp. intertidally and Ulvaria obscura subtidally. Factors that could cause this spatial difference were examined, including competition, grazer preferences, salinity, photoacclimation, nutrient requirements, and responses to nutrient enrichment. Ulva specimens grew faster than Ulvaria in intertidal chambers but not significantly faster in subtidal chambers. Ulva was better able to acclimate to a high-light environment and was more tolerant of low salinity than Ulvaria. Ulvaria had higher tissue N content, chlorophyll, chlorophyll b: chlorophyll a, and protein content than Ulva. These differences suggest that nitrogen availability could affect species composition. A suite of five grazers preferred Ulva to Ulvaria in choice experiments. Thus, bottom-up factors allow Ulva to dominate the intertidal zone while resistance to grazers appears to allow Ulvaria to dominate the subtidal zone. While ulvoid algae are in the same functional-form group, they are not functionally redundant.  相似文献   
5.
6.
The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.  相似文献   
7.
8.
Phytoremediation of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater using constructed wetlands is a potentially economical remediation alternative. To evaluate Explosives removal and fate was evaluated using hydroponic batch incubations of plant and substrate treatments with explosives-contaminated groundwater amended with [U-14C]-TNT or [U-14C]-RDX. Plants and substrates were collected from a small-scale wetland constructed for explosives removal, and groundwater originated from a local aquifer at the Milan Army Ammunition Plant. The study surveyed three aquatic, four wetland plant species and two substrates in independent incubations of 7 days with TNT and 13 days with RDX. Parent compounds and transformation products were followed using 14C and chemical (HPLC) analyses. Mass balance of water, plants, substrates and air was determined. It was demonstrated that TNT disappeared completely from groundwater incubated with plants, although growth of most plants except parrot-feather was low in groundwater amended to contain 1.6 to 3.4 mg TNT L-1. Highest specific removal rates were found in submersed plants in water star-grass and in all emergent plants except wool-grass. TNT declined less with substrates, and least in controls without plants. Radiolabel was present in all plants after incubation. Mineralization to 14CO2 was very low, and evolution into 14C-volatile organics negligible. RDX disappeared less rapidly than TNT from groundwater. Growth of submersed plants was normal, but that of emergent plants reduced in groundwater amended to contain 1.5 mg RDX L-1. Highest specific RDX removal rates were found in submersed plants in elodea, and in emergent plants in reed canary grass. RDX failed to disappear with substrates. Mineralization to 14CO2 was low, but relatively higher than in the TNT experiment. Evolution into 14C-volatile organics was negligible. Important considerations for using certain aquatic and wetland plants in constructed wetlands aimed at removing explosives from water are: (1) plant persistence at the explosives level to which it is exposed, (2) specific plant-mass based explosives removal rates, (3) plant productivity, and (4) fate of parent compounds and transformation products in water, plants, and sediments.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号