首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   1篇
综合类   2篇
基础理论   2篇
污染及防治   2篇
  2002年   1篇
  1999年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1969年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
Seasonal changes in gonald size and stages of gametogenesis in the black abalone Haliotis cracheroidii were related to changes in environmental parameters. H. cracheroidii showed an annual reproductive cycle terminating in a synchronized spawning in late summer. Gametogenesis was initiated immediately after spawning. Gametes were present in the gonad through the winter months. Gametogenesis was initiated a second time in the spring months. Maximal gonad growth (to a gonad index of 20%) occurred during summer months prior to spawning. Changes in gonad size andperiods of initiation of gametogenesis revealed no apparent correlation with changes in seasonal water temperature. Changes in gonad size showed no apparent relation to change in day length. Total polysaccharide levels in foot tissue changed seasonally, indicating that food availability is probably not a factor in directly regulating gonad growth. Gonad index data for the chiton Katharina tunicata (collected over a 10 year period) showed no apparent correlation to seasonal change in water temperature.  相似文献   
4.
Low-temperature thermal aeration (LTTA) is a remedial technology developed by Canonie Environmental Services Corp. (Canonie) for use on soils containing nonchlorinated hydrocarbons, chlorinated solvents, volatile organic compounds (VOCs), chlorinated pesticides, and low levels of polynuclear aromatic hydrocarbons (PAHs). The LTTA system separates these hazardous constituents from excavated soils and allows the treated soils to be redeposited on-site without restriction. This article describes the various components and operation of LTTA systems for the remediation of soils contaminated with chlorinated and nonchlorinated constituents. The article also details the results of projects completed to date, principally for soil impacted with chlorinated hydrocarbons, and discusses the general characteristics and results of systems used for soils contaminated with nonchlorinated hydrocarbons (gasoline, etc.).  相似文献   
5.
6.
Direct pumping and enhanced recovery of coal tar and creosote dense, non-aqueous phase liquids (DNAPLs) from the subsurface have had mixed results because these DNAPLs are viscous fluids that can potentially alter aquifer wettability. To improve the inefficiencies associated with waterflooding, the research presented here considered the use of a polymer solution that can be added to the injected flood solution to increase the viscosity and decrease the velocity of the flooding solution. Results from one-dimensional, vertically oriented laboratory column experiments that evaluate the recovery of coal-derived DNAPL with both water and polymer flooding solutions are presented. The final DNAPL saturation remaining in the column was assessed in water and oil-wet systems for three viscous DNAPLs. Adding polymer to increase the aqueous solution viscosity did not have a significant impact in water-wet systems. A final DNAPL saturation of approximately 19% was achieved for both water and polymer floods. In contrast, the addition of polymer significantly improved recovery in oil-wet systems. The final saturation was over 40% in oil-wet systems after waterflooding, but approximately 19% with a polymer flushing solution. Although the final saturation produced with polymer flooding was similar between the oil- and water-wet systems, differences in the relative permeability and distribution of DNAPL in the porous matrix caused the DNAPL recovery to be much slower in the oil-wet system.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号