首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   2篇
污染及防治   4篇
  2022年   1篇
  2012年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.  相似文献   
2.
Guha, Hillol and Sorab Panday, 2012. Impact of Sea Level Rise on Groundwater Salinity in a Coastal Community of South Florida. Journal of the American Water Resources Association (JAWRA) 48(3): 510-529. DOI: 10.1111/j.1752-1688.2011.00630.x Abstract: Freshwater resources of coastal communities in the United States and world over are threatened by the rate of sea level rise. According to recent estimates by various governmental agencies and climate researchers, the global sea level rise is likely to be between 0.6 and 2.1 m by the year 2100. South Florida is a coastal community and much of its coastline is subject to sea level rise and potential impacts to wetlands and the water resources of the area. To understand what the impact of sea level rise would cause to the groundwater level and salinity intrusion, an integrated groundwater and surface water model was developed for North Miami-Dade and Broward Counties of South Florida. The model was calibrated against daily groundwater heads, base flows in canals, and chloride concentrations for a period of one year and six months. Three separate sensitivity analyses were conducted by increasing the sea level by 0.6, 0.9, and 1.22 m. Results of the simulations shows increase of groundwater heads in some areas from 4 to 15%; whereas the average relative chloride concentrations increased significantly by 100-600% in some wells. The increase in groundwater elevations and chloride concentrations varies from location of the wells and its proximity to the coast. The model results indicate that even a 0.6 m increase in sea level (which is the conservative estimate) is likely to impair the vital freshwater resources in many parts of South Florida.  相似文献   
3.
We examine how the processes of advection, dispersion, oxidation-reduction, and adsorption combine to affect the transport of chromium through columns packed with pyrolusite (beta-MnO2)-coated sand. We find that beta-MnO2 effectively oxidizes Cr(III) to Cr(VI) and that the extent of oxidation is sensitive to changes in pH, pore water velocity, and influent concentrations of Cr(III). Cr(III) oxidation rates, although initially high, decline well before the supply of beta-MnO2 is depleted, suggesting that a reaction product inhibits the conversion of Cr(III) to Cr(VI). Rate-limited reactions govern the weak adsorption of each chromium species, with Cr(III) adsorption varying directly with pH and Cr(VI) adsorption varying inversely with pH. The breakthrough data on chromium transport can be matched closely by calculations of a simple model that accounts for (1) advective-dispersive transport of Cr(III), Cr(VI), and dissolved oxygen, (2) first-order kinetics adsorption of the reduced and oxidized chromium species, and (3) nonlinear rate-limited oxidation of Cr(III) to Cr(VI). Our work supplements the limited database on the transport of redox-sensitive metals in porous media and provides a means for quantifying the coupled processes that contribute to this transport.  相似文献   
4.
Environmental Science and Pollution Research - Macroinvertebrate community in the intertidal setup plays an important role in coastal ecosystem functions and biogeochemical cycle. However,...  相似文献   
5.
Abstract: Development of any numerical ground‐water model is dependent on hydrogeologic data describing the subsurface. These data are obtained from geologic core analyses, stratigraphic analyses, aquifer performance tests, and geophysical studies. But typically in remote areas, these types of data are very sparse and site‐specific in terms of the aerial extent of the resource to be modeled. Uncertainties exist as to how well the available data from a few locations defines a heterogeneous surficial aquifer such as the Biscayne Aquifer in Miami‐Dade County, Florida. This is particularly the case when an exceptionally conductive horizontal flow zone is detected at one site due to specialized testing that was not historically conducted at the other at sites that provided data for the model. Not adequately accounting for the potential effect of the high flow zone in the aquifer within a ground‐water numerical model, even though the zone may be of very limited thickness, might underpredict the well field protection capture boundaries. Applied Stochastic ground‐water modeling in determining well field protection zones is steadily becoming important in addressing the uncertainty of the hydrogeologic subsurface parameters, specifically in karstic heterogeneous aquifers. This is particularly important in addressing the uncertainty of a 60‐day travel time capture zone in the Northwest Well Field, Miami‐Dade County, where a predominantly high flow zone controls much of the flow in the production wells. A stochastic ground‐water modeling application along with combination of pilot points and regularization technique is presented to further consolidate the uncertainty of the subsurface.  相似文献   
6.
Hexavalent chromium (Cr(VI)) was reduced to immobile and nontoxic Cr(III) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of kinetic batch and dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT. Reduction of Cr(VI) was rapid (within 1 h) in columns packed with quartz sand and bacteria, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO2-coated sand. A mathematical model was developed and evaluated against data obtained from column experiments. The model takes into account (1) advective-dispersive transport of Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria); (2) first-order kinetic adsorption of Cr(III) and lactate; (3) conversion of solid phase beta-MnO2 to solid phase MnOOH due to oxidation of Cr(III); (4) dual-Monod kinetics, where Cr(VI) is the electron acceptor and lactate is the electron donor. The breakthrough data for Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria) were fitted simultaneously. The breakthrough data are well described by the mathematical model that considers the above processes. This result demonstrates the ability of the coupled hydrobiogeochemical model to simulate chromium transport in complex reactive systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号