首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
安全科学   1篇
污染及防治   5篇
社会与环境   1篇
  2021年   1篇
  2012年   3篇
  2011年   1篇
  2004年   2篇
排序方式: 共有7条查询结果,搜索用时 140 毫秒
1
1.
Environmental Science and Pollution Research - Nylon powders are a type of microplastic (MP) used in personal care products such as cosmetics and sunscreens. To determine the effects of nylon...  相似文献   
2.
Xiao P  Mori T  Kamei I  Kiyota H  Takagi K  Kondo R 《Chemosphere》2011,85(2):218-224
White rot fungi can degrade a wide spectrum of recalcitrant organic pollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated biphenyls (PCBs). In this experiment, 20 white rot fungi, belonging to genus Phlebia, were investigated for their ability to degrade dieldrin. Based on the screening results, we further investigated Phlebia acanthocystis, Phlebia brevispora, and Phlebia aurea to determine their degradation capacity and metabolic products towards dieldrin and aldrin. The three fungi were able to remove over 50% of dieldrin in a low nitrogen medium, after 42 d of incubation. Three hydroxylated products were detected as metabolites of dieldrin, suggesting that in Phlebia strains, hydroxylation reactions might play an important role in the metabolism of dieldrin. In contrast to dieldrin, aldrin exhibited higher levels of degradation activity. Over 90% of aldrin was removed after 28 d of incubation, and several new metabolites of aldrin in microorganisms, including 9-hydroxyaldrin and two carboxylic acid products, were detected in fungal cultures. These results indicate that the methylene moiety of aldrin and dieldrin molecules might be prone to enzymatic attack by white rot fungi. In this study, we describe for the first time a new metabolic pathway of both compounds by fungi of genus Phlebia.  相似文献   
3.
In response to increasing trends in sulfur deposition in Northeast Asia, three countries in the region (China, Japan, and Korea) agreed to devise abatement strategies. The concepts of critical loads and source?Creceptor (S?CR) relationships provide guidance for formulating such strategies. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, this study analyzes sulfur deposition data in order to optimize acidic loads over the three countries. The three groups involved in this study carried out a full year (2002) of sulfur deposition modeling over the geographic region spanning the three countries, using three air quality models: MM5-CMAQ, MM5-RAQM, and RAMS-CADM, employed by Chinese, Japanese, and Korean modeling groups, respectively. Each model employed its own meteorological numerical model and model parameters. Only the emission rates for SO2 and NOx obtained from the LTP project were the common parameter used in the three models. Three models revealed some bias from dry to wet deposition, particularly the latter because of the bias in annual precipitation. This finding points to the need for further sensitivity tests of the wet removal rates in association with underlying cloud?Cprecipitation physics and parameterizations. Despite this bias, the annual total (dry plus wet) sulfur deposition predicted by the models were surprisingly very similar. The ensemble average annual total deposition was 7,203.6?±?370 kt S with a minimal mean fractional error (MFE) of 8.95?±?5.24?% and a pattern correlation (PC) of 0.89?C0.93 between the models. This exercise revealed that despite rather poor error scores in comparison with observations, these consistent total deposition values across the three models, based on LTP group's input data assumptions, suggest a plausible S?CR relationship that can be applied to the next task of designing cost-effective emission abatement strategies.  相似文献   
4.
5.
Di-isopropylnaphthalene (DIPN) has highly persistent and bioaccumulative properties, and a large amount of DIPN is used as a PCB substitute in Japan. However, DIPN in the environment has not been thoroughly investigated. In addition, mono-isopropylnaphthalene (MIPN) and tri-isopropylnaphthalene (TIPN), which are the homologues of DIPN, have similar properties to DIPN. In this study, simultaneous analytical methods for MIPN, DIPN, and TIPN for air, environmental water, sediment, and biological samples were developed, and the resultant contamination caused by each in the environment was investigated. DIPN was detected at 1.1?±?0.38?ng/m3 in air and between <?1.9 and 9.8?ng/L in river water, but MIPN and TIPN were not. In Lateolabrax japonicas (Japanese sea perch), TIPN was detected from only females at between 0.65 and 1.4?ng/g-wet. DIPN was detected from all perches at between 1.2 and 3.4?ng/g-wet. DIPN and TIPN isomer fingerprints in females were different from those in the reference standard stock solution ones. In sediments, MIPN, DIPN, and TIPN were detected at between <?0.16 and 8.6?ng/g-dry, between <?1.1 and 4400?ng/g-dry, and between <?0.83 and 500?ng/g-dry, respectively. The contamination trend of DIPN in the sediments was similar to that of PCBs.  相似文献   
6.
7.
This paper describes an application of the quasi-partition law of radon-222 (222Rn) to a deep unsaturated vadose zone in a field. 222Rn is a very useful tracer to investigate not only saturated but also unsaturated water flows in vadose zones. Concentrations of 222Rn in water in unsaturated soils are, based on the quasi-partition law, lower than those in saturated soils. However, no study has previously applied quasi-partition law of 222Rn to analyze saturated and unsaturated water flows in vadose zones. In this study, we observed the applicability of existing theoretical equations of quasi-partition law of 222Rn experimentally. After confirming the validity of the theoretical equation, we applied this equation to estimate the unsaturated water flow in an actual vadose zone. By comparing the estimated degree of saturation from 222Rn measurement with that from a neutron moisture meter measurement, we obtained a beautiful agreement between them.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号