首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
废物处理   1篇
环保管理   9篇
综合类   2篇
基础理论   5篇
污染及防治   9篇
评价与监测   2篇
灾害及防治   2篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   2篇
  1996年   1篇
  1977年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
ABSTRACT

Gaseous NH3 removal was studied in laboratory-scale biofilters (14-L reactor volume) containing perlite inoculated with a nitrifying enrichment culture. These biofilters received 6 L/min of airflow with inlet NH3 concentrations of 20 or 50 ppm, and removed more than 99.99% of the NH3 for the period of operation (101, 102 days). Comparison between an active reactor and an autoclaved control indicated that NH3 removal resulted from nitrification directly, as well as from enhanced absorption resulting from acidity produced by nitrification. Spatial distribution studies (20 ppm only) after 8 days of operation showed that nearly 95% of the NH3 could be accounted for in the lower 25% of the biofilter matrix, proximate to the port of entry. Periodic analysis of the biofilter material (20 and 50 ppm) showed accumulation of the nitrification product NO3 - early in the operation, but later both NO2 - and NO3 - accumulated. Additionally, the N-mass balance accountability dropped from near 100% early in the experiments to ~95 and 75% for the 20- and 50-ppm biofilters, respectively. A partial contributing factor to this drop in mass balance accountability was the production of NO and N2O, which were detected in the biofilter exhaust.  相似文献   
2.
3.
Based on actual project experiences over the past decade, execution strategies for remediation projects have varied significantly. For example, the overlap between the assessment and cleanup phases can range from none (for projects that complete assessment activities before starting the cleanup) to almost half of the assessment duration (for projects that may be under pressure to show progress at the site). This article quantifies the relationship between remediation project execution strategies, project definition components, and remediation project cost and schedule performance. By relating project outcomes to indicators that can be monitored early in the project cycle, project teams may be able to correct problems before they affect the ultimate performance of the remediation project.  相似文献   
4.
Otolith chemistry can be used to assess pelagic larval fish connectivity by comparing spatially variable otolith edge chemistry (corresponding to the site of collection) to otolith core chemistry (corresponding to the site of hatching). However, because the otolith’s edge and core represent different life stages, the deposition of elements may differ, thus complicating direct comparisons of edge and core chemistry to investigate connectivity. Here we present data from a field experiment in which otoliths from embryos (3 days post-fertilization) and juveniles of Stegastes partitus were collected at the same site and time, and chemically analyzed to assess whether elemental concentrations of otoliths vary ontogenetically. Separate multivariate analyses, each investigating the spatial/temporal variability in the chemistry of either embryo otoliths or the edges of juvenile otoliths, revealed significant differences, suggesting an environmental influence to the chemical signals of otoliths. A nested multivariate analysis assessing whether otolith chemistry varied with life history stage (i.e., ontogenetic variability) indicated that elemental concentrations of embryo otoliths were significantly greater than that of juvenile otolith edges. Specifically, embryo elemental concentrations of Mn, Zn, Sn, Ba, Ce, and Pb were between 2 and 163 times greater than those of the corresponding juvenile otoliths, and thus the environment was not the primary determinant of embryo otolith chemistry. Consequently, caution is warranted when interpreting environmental patterns of otolith cores, particularly when using them as a proxy for natal signatures.  相似文献   
5.
Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and landuse affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Landuse impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of instream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Landuse impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting landuse impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional landuse impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.  相似文献   
6.
7.
Urbanization and nutrient retention in freshwater riparian wetlands.   总被引:1,自引:0,他引:1  
Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with % ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services, such as water quality improvement, in urbanizing landscapes.  相似文献   
8.
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.  相似文献   
9.
Revegetation and soil restoration efforts, often associated with erosion control measures on disturbed soils, are rarely monitored or otherwise evaluated in terms of improved hydrologic, much less, ecologic function and longer term sustainability. As in many watersheds, sediment is a key parameter of concern in the Tahoe Basin, particularly fine sediments less than about ten microns. Numerous erosion control measures deployed in the Basin during the past several decades have under-performed, or simply failed after a few years and new soil restoration methods of erosion control are under investigation. We outline a comprehensive, integrated field-based evaluation and assessment of the hydrologic function associated with these soil restoration methods with the hypothesis that restoration of sustainable function will result in longer term erosion control benefits than that currently achieved with more commonly used surface treatment methods (e.g. straw/mulch covers and hydroseeding). The monitoring includes cover-point and ocular assessments of plant cover, species type and diversity; soil sampling for nutrient status; rainfall simulation measurement of infiltration and runoff rates; cone penetrometer measurements of soil compaction and thickness of mulch layer depths. Through multi-year hydrologic and vegetation monitoring at ten sites and 120 plots, we illustrate the results obtained from the integrated monitoring program and describe how it might guide future restoration efforts and monitoring assessments.  相似文献   
10.
Dam Rv  Hogan A  Harford A  Markich S 《Chemosphere》2008,73(3):305-313
The decommissioned Mount Todd gold mine, located in the wet-dry tropics of northern Australia, consists of a large waste water inventory and an acid rock drainage problem, which has the potential to impact upon freshwater ecosystems of the Edith River catchment. The toxicity of retention pond 1 (RP1) water was determined using six local freshwater species (duckweed, alga, cladoceran, snail, hydra and a fish). RP1 water was very toxic to all species, with the percentage dilution of RP1 water inhibiting 10% of organism response (IC(10)), or lethal to 5% of individuals (LC(5)), ranging from 0.007 to 0.088%. The percentage dilution of RP1 water inhibiting 50% of organism response (IC(50)), or lethal to 50% of individuals (LC(50)), ranged from 0.051% to 0.58%. Based on chemical analyses and geochemical speciation modelling of the test waters, Cu, Zn and Al were the most likely toxic components at acidic dilutions (i.e. 1%), while Cu and Zn were the most likely toxic components at 0.1% RP1 water, where pH was 6.5. Species sensitivity distributions (SSDs) were used to predict dilutions of RP1 water that would protect or unacceptably affect the downstream aquatic ecosystems. A dilution ratio of 1 part RP1 water to 20000 parts Edith River water (0.005% RP1 water) was calculated to be required for the protection of at least 95% of species. This information can be used in conjunction with field chemical and biological data to better predict the ecological risks of RP1 waste water downstream of the Mount Todd mine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号