首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
废物处理   1篇
环保管理   2篇
综合类   2篇
基础理论   1篇
污染及防治   3篇
评价与监测   2篇
社会与环境   2篇
灾害及防治   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有14条查询结果,搜索用时 131 毫秒
1.
This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.  相似文献   
2.
This paper provides an overview of the impacts of rural land use on lowland streamwater phosphorus (P) and nitrogen (N) concentrations and P loads and sources in lowland streams. Based on weekly water quality monitoring, the impacts of agriculture on streamwater P and N hydrochemistry were examined along a gradient of rural–agricultural land use, by monitoring three sets of ‘paired’ (near-adjacent) rural headwater streams, draining catchments which are representative of the major geology, soil types and rural/agricultural land use types of large areas of lowland Britain. The magnitude and timing of P and N inputs were assessed and the load apportionment model (LAM) was applied to quantify ‘continuous’ (point) source and ‘flow-dependent’ (diffuse) source contributions of P to these headwater streams. The results show that intensive arable farming had only a comparatively small impact on streamwater total phosphorus (TP loads), with highly consistent stream diffuse-source TP yields of ca. 0.5 kg-P ha?1 year?1 for the predominantly arable catchments with both clay and loam soils, compared with 0.4 kg-P ha?1 year?1 for low agricultural intensity grassland/woodland on similar soil types. In contrast, intensive livestock farming on heavy clay soils resulted in dramatically higher stream diffuse-source TP yields of 2 kg-P ha?1 year?1. The streamwater hydrochemistry of the livestock-dominated catchment was characterised by high concentrations of organic P, C and N fractions, associated with manure and slurry sources. Across the study sites, the impacts of human settlement were clearly identifiable with effluent inputs from septic tanks and sewage treatment works resulting in large-scale increases in soluble reactive phosphorus (SRP) loads and concentrations. At sites heavily impacted by rural settlements, SRP concentrations under baseflow conditions reached several hundred μg-P L?1. Load apportionment modelling demonstrated significant ‘point-source’ P inputs to the streams even where there were no sewage treatment works within the upstream catchment. This indicates that, even in sparsely populated rural headwater catchments, small settlements and even isolated groups of houses are sufficient to cause significant nutrient pollution and that septic tank systems serving these rural communities are actually operating as multiple point sources, rather than a diffuse input.  相似文献   
3.
Phosphorus (P) is a limiting nutrient in freshwater systems and when present in runoff from agricultural lands or urban centers may contribute to excessive periphyton growth. In this study, we examined the link between soil erosion and delivery of eroded soil to streams during flow events, and the impact of that freshly deposited soil on dissolved reactive P (DRP) concentrations and periphyton growth under baseflow conditions when the risk of stream eutrophication is greatest. A microcosm experiment was designed to simulate the release of P from soil which had been amended with different amounts of P fertilizer to overlying water during baseflow conditions. Unglazed tiles, inoculated for five days in a second order stream, were incubated for seven days in microcosms containing soil with eight levels of soil Mehlich‐3 plant available phosphorus (M3P) ranging from 20 to 679 mg/kg M3P. Microcosm DRP was monitored. Following incubation tiles were scraped and the periphyton analyzed for chlorophyll a. Microcosm DRP concentrations increased with increasing soil M3P and equilibrium phosphorus concentration (EPC0). Relationships between M3P, EPC0, and DRP were nonlinear and increases in soil M3P and/or DRP had a greater impact on biomass accumulation when these parameters were above threshold values of 30 mg/kg M3P and 0.125 mg/L DRP. Significantly, this ecological threshold corresponds to the agronomic thresholds above which increased soil M3P does not increase plant response.  相似文献   
4.
Robinson L  Jarvie JK 《Disasters》2008,32(4):631-645
Tourism is highly vulnerable to external, non-controllable events. A natural disaster can affect the local tourism industry in numerous ways, and such events are particularly devastating for small communities whose local economy is heavily dependent on the sector. Loss of infrastructure plus negative media stories can have long-term ramifications for the destination. In spite of the economic importance of tourism, post-disaster recovery efforts in this sector are often overlooked by non-governmental organisations (NGOs), which focus on more traditional livelihoods such as agriculture or fishing. This paper describes Mercy Corps' support of tourism recovery activities in Arugam Bay, a remote village on the east coast of Sri Lanka, following the 2004 tsunami. The local economic base is built largely on two sectors: community tourism and fishing. As many other actors were supporting recovery in the local fishing industry, Mercy Corps concentrated on revitalising the tourism sector.  相似文献   
5.
The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.  相似文献   
6.
Extended end-member mixing analysis (E-EMMA) is presented as a novel empirical method for exploring phosphorus (P) retention and release in rivers and watersheds, as an aid to water-quality management. E-EMMA offers a simple and versatile tool that relies solely on routinely measured P concentration and flow data. E-EMMA was applied to two river systems: the Thames (U.K.) and Sandusky River (U.S.), which drain similar watershed areas but have contrasting dominant P sources and hydrology. For both the Thames and Sandusky, P fluxes at the watershed outlets were strongly influenced by processes that retain and cycle P. However, patterns of P retention were markedly different for the two rivers, linked to differences in P sources and speciation, hydrology and land use. On an annual timescale, up to 48% of the P flux was retained for the Sandusky and up to 14% for the Thames. Under ecologically critical low-flow periods, up to 93% of the P flux was retained for the Sandusky and up to 42% for the Thames. In the main River Thames and the Sandusky River, in-stream processes under low flows were capable of regulating the delivery of P and modifying the timing of delivery in a way that may help to reduce ecological impacts to downstream river reaches, by reducing ambient P concentrations at times of greatest river eutrophication risk. The results also suggest that by moving toward cleaner rivers and improved ecosystem health, the efficiency of P retention may actually increase.  相似文献   
7.
Stream-bed sediments from three paired catchments, each draining a lower agricultural intensity system and a higher agricultural intensity system, were analysed for (a) total P (TP), (b) bioavailable-P (Resin-P), (c) equilibrium phosphorus concentration (EPC0), and (d) degree of phosphorus saturation (DPS). The influence of agriculture on sediment P was explored within the context of other key variables that may control the sediment P concentrations such as particle size, Fe, Ca and organic matter content, and in terms of potential implications of sediment P to in-stream biota. TP concentrations, EPC0, and the proportion of fine sediment were highest at the sites with the greater agricultural impact. Higher concentrations of bioavailable-P were also found in higher intensity agricultural systems. However, the highest concentrations of bioavailable-P were found at sites with point source inputs. Sites with high Fe concentrations had higher TP concentrations relative to agricultural intensity, but also had lower DPS values, illustrating that the sediment still had the capacity to take up P in a strongly bound form. The results from this study show that higher risk agricultural practices (intensive arable production and dairy and beef production) can lead either directly, or indirectly through increased inputs of fine sediment, to increased sediment TP concentrations. The importance of geochemical and physical controls on the bed sediments’ capacity to mitigate high P inputs in headwater lowland streams, especially under low flows and times of eutrophication risk in spring and summer is illustrated.  相似文献   
8.
9.
Ambio - The chaotic distribution and dispersal of phosphorus (P) used in food systems (defined here as disorderly disruptions to the P cycle) is harming our environment beyond acceptable limits. An...  相似文献   
10.
A typology of land characteristics for the Humber catchment in central/eastern England is identified in relation to land use, hydrology and demographic, topographic and geological characteristics, using GIS and statistical analyses. Empirical relationships between land characteristics and water quality were examined in relation to the spatial variability in water quality across the Humber catchment. Analyses of relationships between land characteristics and water quality were undertaken at two hierarchical scales: (1) individual catchments and (2) localities of 10 km radius draining to each sampling site. The importance of urban and agricultural sources was identified, together with a hydrological component linked to dilution of point source inputs and mobilisation of specific sediment-associated contaminants in higher-energy (higher-flow) environments. High-solubility (dissolved) chemical determinands (such as B, Cl and SO4), which undergo conservative transport through the river network, show the strongest linkages with land characteristics at the catchment scale. Cr, Zn and Ca show stronger correlations with land characteristics at the locality rather than the catchment scale, indicating that the concentrations of these determinands are more closely linked to the availability of localised sources. This work provides a starting point for investigating how changes in land use and management of drainage basins might impact river water quality at the regional scale and fluxes to the coastal zone, by providing a mechanism for examining linkages between regional-scale land characteristics and river water quality. The next step requires development of the approach within a more rigorous statistical framework and the extension of the regional analysis within a wider national and international context. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号