首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   1篇
基础理论   1篇
污染及防治   2篇
社会与环境   1篇
  2021年   2篇
  2016年   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Composting is attractive and inexpensive method for treatment and biomass disposal of water hyacinth. However, the major disadvantage of water hyacinth composting is the high content of heavy metals in the final compost. Addition of lime sludge significantly reduced most bioavailable fractions (exchangeable and carbonate) of heavy metals. Studies were carried on composting of water hyacinth (Eichhornia crassipes) with cattle manure and sawdust (6:3:1 ratio) and effects of addition of lime (1%, 2% and 3%) on heavy metal speciation were evaluated during 30 days of composting period. The Tessier sequential extraction method was employed to investigate the changes in speciation of heavy metals such as Zinc (Zn), Copper (Cu), Manganese (Mn), Iron (Fe), Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr) during water hyacinth composting. Effects of physicochemical parameters such as temperature, pH and organic matter on speciation of heavy metals were also studied during the process. Results showed that, the total metal content was increased during the composting process. The higher reduction in bioavailability factor (BF) of Cu, Fe, Ni, Cd and Cr was observed in lime 2 treatment about 62.1%, 64.4%, 71.9%, 62.1% and 58.9% respectively; however higher reduction in BF of Zn and Pb was observed in lime 1 treatment during the composting process. Reducible and oxidizable fractions of Ni, Pb and Cd were not observed during the process. Addition of lime was very effective for reduction of bioavailability of heavy metals during composting of water hyacinth with cattle manure and sawdust.  相似文献   
2.
This study presents a geographical information system (GIS)-based procedure for the precise estimation of solid waste generation, computed using the local population density and income group distribution. Using a triangulated irregular network (TIN) in a GIS environment, the procedure further determines the command area for waste allocation to a particular bin which is generally located so the route slopes towards the collection points for ease of transportation by cart pullers. Computational results of bin location, type, size and the frequency of removal are presented for a typical urban area with known population density, income group distribution, road network and topology.  相似文献   
3.

The current study investigates on correlating the heavy metal contamination, its distribution, and the human health risk associated with all three components of an aquatic ecosystem. For this purpose, water, sediment, and fish samples (three species, notably Notopterus notopterus, Clarias batrachus, and Channa striata) from Deepor Beel were considered, and their heavy metal contamination and distribution were determined. The corresponding health risks were then evaluated for six different heavy metals; Cr, Cd, Fe, Mn, Cu, and Pb. Pb and Mn were found to significantly impact the non-carcinogenic human health risks for the water column. Simultaneously, Cd was considered to possess the highest potential for both carcinogenic and non-carcinogenic health effects in the sediment column. Cd also played a critical role in the fish samples' bioaccumulation factor, with the liver showing the maximum bioaccumulation potential. Furthermore, children were found to have considerably higher effects (both carcinogenic and non-carcinogenic) than adults. Finally, the sediment column was found to substantially contribute to the bioaccumulation factor in the fish biota, compared to the water column. The results of this investigation will thus prove consequential in designing, monitoring and restoring aquatic ecosystems.

  相似文献   
4.
Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis.  相似文献   
5.
Environmental Science and Pollution Research - For safe disposal of wastes in landfills, compacted bentonite is recommended as bottom liners due to their significant cation exchange (CEC) and...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号