首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   4篇
污染及防治   1篇
  2015年   2篇
  2013年   2篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A new analytical method for determining cobalt (Co) species in human serum by size exclusion chromatography with inductively coupled plasma mass spectrometry (SEC-ICP-MS) was applied to serum samples collected from 12 human volunteers who participated in a Co(II) chloride supplement study involving ingestion of 1 mg Co/day for up to 90 consecutive days. The study protocol included determination of serum total Co by acid digestion followed by ICP-MS. Co speciation assay measurements were conducted for up to 13 time points per individual spanning from one to two weeks before dosing began to two weeks after dosing ceased. The Co speciation assay showed good recovery >91% relative to total Co measurements. Undiluted serum demonstrated uniform fractions of large molecular Co defined as Co bound to albumin and other proteins >50 kDa at 96% and the residual as small molecular Co defined as free Co(II) and <1 kDa Co-complexes for individual serum Co concentrations up to 146 μg/L. There were no dose-related changes in Co distribution. Analysis of the same serum samples with tenfold dilution in 0.1 M acetic acid led to a lower fraction of large molecular Co at 87%, with the difference between diluted and undiluted measurements being 8.4%. The difference noted between undiluted and diluted large molecular Co may be attributed to Co release from albumin. Data demonstrated that large molecular Co was the predominant Co species in both undiluted and diluted human serum over a broad range of in vivo Co concentrations, reflecting high albumin–Co binding capacity. These data validate the Co speciation assay and may be employed in understanding further the toxicokinetics and dose-response relationships for Co species.  相似文献   
2.
We modified our prior age-dependent half-life model to characterize the range of child (ages 0-7) body burdens associated with dietary and environmental exposure to polychlorodibenzodioxins and furans (PCDD/Fs). Several exposure scenarios were evaluated. Infants were assumed to be either breast-fed or formula-fed from birth to 6 months of age. They then received intakes of PCDD/Fs through age 7 from foods based on weighted means estimates [JECFA, 2001. Joint FAO/WHO Committee on Food Additives. Fifty-seventh meeting, Rome, June 5-14 , 2001, pp. 24-40], and with or without exposures (ingestion and dermal) to urban residential soils at 1ppb TCDD toxic equivalents (TEQ). A one-compartment (adipose volume) toxicokinetic model for TCDD described by Kreuzer [Kreuzer, P.F., Csanady, Gy.A., et al., 1997. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and congeners in infants. A toxicokinetic model of human lifetime body burden by TCDD with special emphasis on its uptake by nutrition. Arch. Toxicol. 71, 383-400] was expanded to include the key non-TCDD congeners in human breast milk and adipose tissues, and two model parameter refinements were examined: (1) use of updated and more detailed age-correlated body fat mass data [CDC, 2000. Centers for Disease Control. CDC Growth Charts: United States. Advance Data from Vital and Health Statistics of the Centers for Disease Control and Prevention, National Center for Health Statistics, Number 314, December 2000]; (2) use of breast milk PCDD/F concentration data from sampling completed in 2000-2003 [Wittsiepe, J., Fürst, P., et al., 2004. PCDD/F and dioxin-like PCB in human blood and milk from German mothers. Organohalogen Compd. 66, 2865-2872]. The updated body fat mass data nearly halved the predicted peak body burden for breast-feeding and lowered the time-weighted average (TWA) body burdens from ages 0-7 by 30-40% for breast-fed and formula-fed infants. Combined use of the updated breast milk PCDD/F concentration and body fat mass data increased the contribution of breast-feeding but reduced TWA body burdens from diet and soil. We conclude that further refinements are needed, but reliance on these better data sets for body fat mass and breast milk PCDD/F concentration significantly improves the model's ability to accurately predict body burdens during early childhood.  相似文献   
3.
A method utilizing size exclusion liquid chromatography (SEC) was developed to separate and quantify large molecular cobalt (Co) (e.g., albumin-Co) from cyanocobalamin (vitamin B12) and small molecular Co (e.g., glutathione-Co and free Co) in human serum. Highly selective and sensitive detection using inductively coupled plasma–mass spectrometry was coupled with SEC to provide a method with reliable accuracy, precision, recoveries, stability, and a detection limit of 0.037 μg/L in undiluted serum. Other divalent metal cations known to compete with Co(II) for serum albumin-binding sites (such as iron, zinc, manganese, cadmium, copper, nickel, and lead) did not significantly alter Co(II) quantification. Co–protein binding capacity determination of individual serum samples indicated that addition of 2500 μg Co/L to undiluted human serum resulted in approximately 90% distribution to the large molecular Co peak, consistent with Co binding to high-affinity divalent metal binding sites on albumin. Since serum albumin binding partially sequesters biologically active Co(II) ions, this method provides an important tool for better understanding the kinetics and toxicology of Co compounds. Thus, the proposed method might play an important role in establishing Co dose–response relationships that affect the equilibrium concentrations of free ionic Co(II).  相似文献   
4.
Inductively coupled plasma with mass spectrometric detection (ICP-MS) has been used for clinical analysis of cobalt (Co) due to its sensitivity and specificity; however, media-specific validation studies are lacking. This study provides data on performance variables affecting differences between selected analytical platforms (Perkin Elmer and Agilent), tissue sample preparation, storage, and interferences affecting measurements in whole blood, serum, and synovial fluid. The limits of detection (LOD) range from 0.2–0.5 µg/L in serum and synovial fluid, and 0.6–1.7 µg Co/L in whole blood. The Agilent platform with collision reaction cell is more sensitive, while the Perkin Elmer platform with dynamic reaction cell demonstrates more polyatomic interferences near the LOD for serum and whole blood. Split sample analysis showed good accuracy, precision, and reproducibility between serum Co measurements using acid digestion or detergent dilution preparations for persons with metal hip implants or following supplement intake. The results demonstrated reliability of the ICP-MS methodology across the two analytical platforms and between two commercial laboratories for Co concentrations above 5 µg Co/L, but digestion procedures and polyatomic interferences may affect measurements in some media at lower concentrations. These studies validate the described ICP-MS methodology for clinical purposes with precautions at low cobalt concentrations (<5 µg Co/L).  相似文献   
5.
Laboratory studies were conducted to evaluate airborne release of diacetyl from selected mixtures simulating butter flavorings added to foods. The test materials included diacetyl (97% purity); 0.015%, 0.15%, 1.5%, and 3.0% diacetyl in a water/propylene glycol mixture; 1.5% diacetyl in deionized water or soybean oil; and 3% or 6% diacetyl in a commercial steam distillate from milk fermentation known as “butter starter distillate.” Diacetyl was quantified by gas chromatography with flame ionization detection. Expected concentration-dependent emission patterns based on liquid diacetyl content were demonstrated, but were significantly altered by mixture composition. Soybean oil and deionized water more readily released diacetyl when compared with starter distillate, propylene glycol solutions, and pure diacetyl. Measured diacetyl concentrations under static headspace and dynamic flow-chamber conditions were compared to estimated concentrations utilizing Raoult's law with published and fitted activity coefficient corrections for each mixture, indicating that published coefficients often understated the measured concentrations. It is concluded that headspace (static) and small-chamber (dynamic) measurements of airborne diacetyl provide data to assist in validating model-estimated airborne diacetyl concentrations by using mixture-specific activity coefficients. Implications of these empirical data for validating exposure estimates for diacetyl based on near-field/far-field modeling in workplace settings are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号