首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This study presents an assessment of the potential impact of geological contamination of the environment on the health of the population in Spišsko-Gemerské rudohorie Mts. (SGR Mts.). The concentration levels of potentially toxic elements (mainly As, Cd, Cu, Hg, Pb, Sb, and Zn) were determined in soils, groundwater, surface water, and stream sediments as well as in the food chain (locally grown vegetables). A medical study included some 30 health indicators for all 98 municipalities of the study area. The As and Sb contents in human fluids and tissues were analyzed in one municipality identified to be at the highest risk. Based on element content, environmental and health risks were calculated for respective municipalities. Out of 98 municipalities 14 were characterized with extremely high environmental risk and 10 were characterized with very high carcinogenic risk from arsenic (groundwater). Extensive statistical analysis of geochemical data (element contents in soils, groundwater, surface water, and stream sediments) and health indicators was performed. Significant correlations between element contents in the geological environment and health indicators, mainly cancer and cardiovascular diseases, were identified. Biological monitoring has confirmed the transfer of elements from the geological environment to human fluids and tissues as well as to the local food chain.  相似文献   
2.

Goal, Scope and Background

The aim of this work is to show the ability of several fungal species, isolated from arsenic polluted soils, to biosorb and volatilize arsenic from a liquid medium under laboratory conditions. Mechanisms of biosorption and biovolatilization play an important role in the biogeochemical cycle of arsenic in the environment. The quantification of production of volatile arsenicals is discussed in this article.

Methods

Heat-resistant filamentous fungi Neosartorya fischeri, Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum, originally isolated from sediments highly contaminated with arsenic (more than 1403 mg.l-1 of arsenic), and the non-heat-resistant fungus Aspergillus niger were cultivated in 40 mL liquid Sabouraud medium (SAB) enriched by 0.05, 0.25, 1.0 or 2.5 mg of inorganic arsenic (H3AsO4). After 30-day and 90-day cultivation under laboratory conditions, the total arsenic content was determined in mycelium and SAB medium using the HG AAS analytical method. Production of volatile arsenic derivates by the Neosartorya fischeri strain was also determined directly by hourly sorption using the sorbent Anasorb CSC (USA).

Results

Filamentous fungi volatilized 0.025–0.321 mg of arsenic from the cultivation system, on average, depending on arsenic concentrations and fungal species. The loss of arsenic was calculated indirectly by determining the sum of arsenic content in the mycelium and culture medium. The amount of arsenic captured on sorption material was 35.7 ng of arsenic (22nd day of cultivation) and 56.4 ng of arsenic (29th day of cultivation) after one hour's sorption. Biosorption of arsenic by two types of fungal biomass was also discussed, and the biosorption capacity for arsenic of pelletized and compact biomass of Neosartorya fischeri was on average 0.388 mg and 0.783 mg of arsenic, respectively.

Discussion

The biosorption and amount of volatilized arsenic for each fungal species was evaluated and the effect of initial pH on the biovolatilization of arsenic was discussed.

Conclusions

The most effective biovolatilization of arsenic was observed in the heat-resistant Neosartorya fischeri strain, while biotransformation of arsenic into volatile derivates was approximately two times lower for the non-heat-resistant Aspergillus niger strain. Biovolatilization of arsenic by Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum was negligible. Results from biosorption experiments indicate that nearly all of an uptaken arsenic by Neosartorya fischeri was transformed into volatile derivates.

Recommendations and Perspective

. Biovolatilization and biosorption have a great potential for bioremediation of contaminated localities. However, results showed that not all fungal species are effective in the removal of arsenic. Thus, more work in this research area is needed.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号