首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
基础理论   5篇
污染及防治   10篇
  2017年   2篇
  2013年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 187 毫秒
1.
Most of the existing chemicals of high priority have been released into the environment for many years. Risk assessments for existing chemicals are now conducted within the framework of the German Existing Chemicals Program and by the EC Regulation on Existing Substances. The environmental assessment of a chemical involves:
  1. exposure assessment leading to the derivation of a predicted environmental concentration (PEC) of a chemical from releases due to its production, processing, use, and disposal. The calculation of a PEC takes into account the dispersion of a chemical into different environmental compartments, elimination and dilution processes, as well as degradation. Monitoring data are also considered.
  2. effects assessment. Data obtained from acute or long-term toxicity tests are used for extrapolation on environmental conditions. In order to calculate the concentration with expectedly no adverse effect on organisms (Predicted No Effect Concentration, PNEC) the effect values are divided by an assessment factor. This assessment factor depends on the quantity and quality of toxicity data available.
In the last step of the initial risk assessment, the measured or estimated PEC is compared with the PNEC. This “risk characterization” is conducted for each compartment separately (water, sediment, soil, and atmosphere). In case PEC > PNEC an attempt should be made to revise data of exposure and/or effects to conduct a refined risk characterization. In case PEC is again larger than PNEC risk reduction measures have to be considered.  相似文献   
2.
3.
GOAL, SCOPE AND BACKGROUND: Environmental issues of personal care products have been met with little attention in the past. Monitoring data as well as preliminary environmental risk assessments indicate that some ingredients in personal care products might be relevant pollutants in the environment. Following the precautionary principle, eco-labelling is proposed as an effective tool for source control of one major group of personal care products, shampoos, shower gels and foam baths (SSBs). Eco-labelling is a soft, but effective market driven and product specific approach to lower discharge of environmentally detrimental substances. Products that fulfil the criteria proposed help to minimise the impact of SSBs on the environment. METHODS: Available assessment tools for dangerous substances (e.g. current legislation on environmental risk assessments and classification, and labelling, eco-labelling criteria for similar products, the calculation of the critical dilution volume) were adapted and integrated into the criteria for the eco-labelling of SSBs. RESULTS AND DISCUSSION: A short outline of the eco-labelling criteria developed for SSBs is provided. The basic criteria concern the effects of the substances discharged into the waste water during and after use. Products with an eco-label award may exclusively contain substances for which basic information about their effects on the environment is available. They may not contain persistent, bioaccumulating, toxic or ecotoxicological substances. In addition, the basic criteria include requirements for the container and consumer information. CONCLUSION: The basic criteria for eco-labelling SSBs are based on the actual state of science and are at the same time as simple and transparent as possible to ensure the best applicability. SSBs that comply with the described basic criteria can contribute to a lower chemical burden of waste water treatment plants and surface water. RECOMMENDATION AND OUTLOOK: The proposal for basic criteria described should stimulate discussion on eco-labelling of SSBs. It should help to pass valid criteria supported by authorities, producers and consumer groups for a national or international eco-label, e.g. for the European Flower or the German Blue Angel. In future, the successful introduction of labelled SSBs into the market will raise the awareness of the general public about the environmental effects of personal care products and it will help to promote environmentally compatible products.  相似文献   
4.
Hintergrund Organismen k?nnen chemische Signale in ihrer Umgebung, sogenannte Infochemikalien, deuten und als Informationsquelle nutzen, um ad?quat auf ihre biotische und abiotische Umgebung zu reagieren. Diese chemische Kommunikation spielt eine entscheidende Rolle bei lebenswichtigen Aktivit?ten wie Fortpflanzung, Sozialverhalten, Nahrungsaufnahme, Verteidigung und Orientierung und ist damit essenziell für das überleben eines Individuums oder einer Art. Vorgehensweise Der Transfer der Kenntnisse über natürliche Infochemikalien aus der chemischen ?kologie auf die ?kotoxikologie führt zu der Beschreibung des Infochemikalien-Effekts. In einem zweiten Schritt werden M?glichkeiten zur Quantifizierung des Infochemikalien-Effekts entwickelt. Dazu wird die schrittweise Abfolge von der Geruchsemission bis zu den Reaktionen von Empf?ngerorganismen als Basis zu Systematisierung verwendet und geeignete Testans?tze, die sich in der Grundlagenforschung bew?hrt haben, vorgestellt.  相似文献   
5.
A new challenge—development of test systems for the infochemical effect   总被引:1,自引:1,他引:0  

Background, aim, and scope

Many—if not all—organisms depend on so-called infochemicals, chemical substances in their surroundings which inform the receivers about their biotic and abiotic environment and which allow them to react adequately to these signals. Anthropogenic substances can interfere with this complex chemical communication system. This finding is called infochemical effect. So far, it is not known to what extent anthropogenic discharges act as infochemicals and influence life and reproduction of organisms in the environment because adequate testing methods to identify chemicals which show the infochemical effect and to quantify their effects have not been developed yet. The purpose of this article is to help and find suitable test designs.

Main features

Test systems used in basic research to elucidate the olfactory cascade and the communication of environmental organisms by infochemicals are plentiful. Some of them might be the basis for a quantified ecotoxicological analysis of the infochemical effect. In principle, test systems for the infochemical effect could be developed at each step of the chemosensory signal transduction and processing cascade.

Results

Experimental set-ups were compiled systematically under the aspect whether they might be usable for testing the infochemical effect of single chemicals in standardized quantifying laboratory experiments. For an appropriate ecotoxicological assessment of the infochemical effect, experimental studies of many disciplines, such as molecular biology, neurobiology, physiology, chemical ecology, and population dynamics, should be evaluated in detail before a decision can be made which test system, respectively which test battery, might be suited best. The test systems presented here are based on the knowledge of the genetic sequences for olfactory receptors, binding studies of odorants, signal transmission, and reactions of the receivers on the level of the organisms or the populations. The following basic approaches are conceivable to identify the role of an infochemical: binding studies to the odorant-binding protein or to the odorant receptor binding protein (e.g., by in situ hybridization and immunohistochemical studies), measurement of electrical signals of the receptor cells in the tissue (e.g., electroolfactograms, electroantennograms), registration of phenotypic changes (e.g., observation under the microscope), behavioral tests (e.g., in situ online biomonitoring, use of T-shaped olfactometers, tests of avoidance responses), measurement of population changes (e.g., cell density or turbidity measurements), and multispecies tests with observation of community structure and community function. The main focus of this study is on aquatic organisms.

Discussion

It is evident that the infochemical effect is a very complex sublethal endpoint, and it needs further studies with standardized quantitative methods to elucidate whether and to what extent the ecosystem is affected. The collection of approaches presented here is far from being complete but should serve as a point of depart for further experimental research.

Conclusions

This article is the first to compare various approaches for testing the infochemical effect. The development of a suitable test system will not be easy as there are a multitude of relevant chemicals, a multitude of relevant receptors, and a multitude of relevant reactions, and it must be expected that the effective concentrations are very low. The chemical communication is of utmost importance for the ecosystem and justifies great endeavors to find solutions to these technical problems.

Recommendations and perspectives

The infochemical effect is a new chapter in ecotoxicology. Will a new endpoint, the so-called infochemical effect, be required in addition to the actual standard test battery of Annex 5 to Commission Directive 92/69/EEC (EC 1992)? Finding the answer to this question is a big challenge that could be met by a comprehensive research project.  相似文献   
6.

Background

Everyday products can contain a multitude of harmful substances unnoticed by most consumers, because established risk communication channels reach only part of the society. The question is, whether at least interested and informed consumers are able to use risk communication tools and assess harmful chemicals in products.

Results

An online survey investigated the awareness of 1030 consumers on harmful substances in everyday items. Participating consumers’ education level, knowledge in chemistry, and motivation were above society’s average. Although a large number of responses showed that survey participants were familiar with several aspects of the issue, the results revealed that knowledge in chemistry helped, but was not enough. Many participants assumed that products with an eco-label, natural personal care products, products without hazard pictograms or products produced in the European Union would not contain harmful substances. Most participants indicated to use hazard pictograms, information on the packaging, reports in the media, and environmental and consumer organizations as information sources, while information by authorities and manufacturers were not named frequently and did not receive high confidence. Smartphone applications were not indicated by many participants as information sources. The information sources most trusted were environmental and consumer organizations, hazard pictograms, and lists of ingredients on the containers. The declared confidence in certain risk communication instruments did not always correspond to the use frequencies indicated. Nearly all participants considered legislators as responsible for the reduction of harmful substances in consumer products.

Conclusions

Misconceptions about harmful substances in products can be dangerous for the personal health and the environment. The survey indicates that motivation, educational level, and chemical expertise do not automatically provide an appropriate understanding of harmful substances in products. If well-informed consumers are not sufficiently capable to use risk information elements as revealed in this study, then this will be even more the case for the general public. Consumer awareness should be stipulated by an improved information strategy about chemical risks in consumer products with an extensive participation of the target groups and by more efforts by authorities and manufactures to build trust and to provide easily understandable information.
  相似文献   
7.
8.
9.
Fragrances are used in a wide array of everyday products and enter the aquatic environment via wastewater. While several musk compounds have been studied in detail, little is known about the occurrence and fate of other fragrances. We selected 16 fragrance compounds and scrutinized their presence in Bavarian sewage treatment plants (STP) influents and effluents and discussed their ecological risks for the receiving surface waters. Moreover, we followed their concentrations along the path in one STP by corresponding time-related water sampling and derived the respective elimination rates in the purification process. Six fragrance substances (OTNE, HHCB, lilial, acetyl cedrene, menthol, and, in some grab samples, also methyl-dihydrojasmonate) could be detected in the effluents of the investigated sewage treatment plants. The other fragrances under scrutiny were only found in the inflow and were eliminated in the purification process. Only OTNE and HHCB were found in the receiving surface waters of the STP in congruent concentrations, which exceeded the preliminary derived environmental thresholds by a factor of 1.15 and 1.12, respectively, indicating potential risks. OTNE was also detected in similar concentration ranges as HHCB in muscles and livers of fish from surface waters and from ponds that are supplied with purified wastewater. The findings show that some fragrance compounds undergo high elimination rates, whereas others—not only musks—are present in receiving surface water and biota and may present a risk to local aquatic biota. Hence, our results suggest that the fate and potential effects of fragrance compounds in the aquatic environment deserve more attention.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号