首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   1篇
安全科学   1篇
综合类   3篇
污染及防治   16篇
  2013年   8篇
  2012年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有20条查询结果,搜索用时 451 毫秒
1.
 通过两季马铃薯大田试验,研究了嗪草酮在灌溉沙壤土中的消失和移动情况。结果表明,表层土壤中,嗪草酮施用后最初7~15天内其含量急剧降低,此后随时间推移降低幅度平缓,1993年和1994年试验结束时的残留量分别为5.9μg/kg和2.3μg/kg。两年共采集的379个土样(分布在15~75cm各土层)中只有5个检测到有嗪草酮。1994年大田135cm土层处的水样中,嗪草酮的检测率高达66%,检测浓度范围为0.06~15.85μg/kg,平均浓度为1.94μg/kg。相比较,嗪草酮在大田试验中的消失速率远大于实验室控制条件下的降解速率。  相似文献   
2.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   
3.
Mesotrione is a benzoylcyclohexane-1,3-dione herbicide that inhibits 4-hydroxyphenyl pyruvate dioxygenase in target plants. Although it has been used since 2000, only a limited number of degrading microorganisms have been reported. Mesotrione-degrading bacteria were selected among strains isolated from Brazilian aquatic environments, located near corn fields treated with this herbicide. Pantoea ananatis was found to rapidly and completely degrade mesotrione. Mesotrione did not serve as a sole C, N, or S source for growth of P. ananatis, and mesotrione catabolism required glucose supplementation to minimal media. LC-MS/MS analyses indicated that mesotrione degradation produced intermediates other than 2-amino-4-methylsulfonyl benzoic acid or 4-methylsulfonyl-2-nitrobenzoic acid, two metabolites previously identified in a mesotrione-degrading Bacillus strain. Since P. ananatis rapidly degraded mesotrione, this strain might be useful for bioremediation purposes.  相似文献   
4.
To assess the risk of a pesticide to leach to groundwater or to run off to surface water after application, it is necessary to characterize the sorption of the pesticide to soil. For pyrethroids, their hydrophobicity, strong sorption to various materials, and low solubility make it difficult to accurately characterize sorption processes. The objective of this research was to evaluate the variability in cyfluthrin ((RS)-alpha -cyano-4-fluoro-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate) sorption to soil as affected by experiment conditions. To minimize cyfluthrin sorption on the walls of glass, silanized-glass, stainless steel, and PTFE centrifuge tubes, cyfluthrin solution was added to aqueous soil slurries or directly to soil, after which it was equilibrated with aqueous solution. Depending on the soil, variation in sorption coefficients, Koc, obtained using different experimental methodologies with one soil can be comparable to the variation in Koc values obtained for soils with different physical and chemical properties using one method. Koc values for cyfluthrin ranged from 56,000 to 300,000 L kg-1. Sorption methodology needs to be evaluated before sorption coefficients are used in predictive transport models.  相似文献   
5.
Abstract

The sorption of imidacloprid (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐N‐nitro‐2‐imidazolid‐inimine) (IMI) and its metabolites imidacloprid‐urea (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐2‐imidazol‐idinone) (IU), imidacloprid‐guanidine (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐4,5‐dihydro‐lH‐imidazol‐2‐amine) (IG), and imida‐cloprid‐guanidine‐olefin ( 1 ‐[(6‐chloro‐3‐pyridinyl)methyl]‐lH‐imidazol‐2‐amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75–134) > IGO (2.87–72.3) > IMI (0.55 ‐16.9) > IU (0.31–9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2=0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non‐tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   
6.
Sorption and desorption of aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropylpyrimidine-4-carboxylic acid) were compared to that of the structurally similar herbicide picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) in three soils of differing origin and composition to determine if picloram data is representative of aminocyclopyrachlor behavior in soil. Aminocyclopyrachlor and picloram batch sorption data fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram (1/n = 0.80–0.90). Freundlich sorption coefficients (K f) for aminocyclopyrachlor were lowest in the eroded and depositional Minnesota soils (0.04 and 0.12 μmol (1–1/n) L1/n kg?1) and the highest in Molokai soil (0.31 μmol (1–1/n) L1/n kg?1). For picloram, K f was lower in the eroded (0.28 μmol (1–1/n) L1/n kg?1) as compared to the depositional Minnesota soil (0.75 μmol (1–1/n) L1/n kg?1). Comparing soil to soil, K f for picloram was consistently higher than those found for aminocyclopyrachlor. Desorption of aminocyclopyrachlor and picloram was hysteretic on all three soils. With regard to the theoretical leaching potential based on groundwater ubiquity score (GUS), leaching potential of both herbicides was considered to be similar. Aminocyclopyrachlor would be ranked as leacher in all three soils if t1/2 was > 12.7 days. To be ranked as non-leacher in all three soils, aminocyclopyrachlor t1/2 would have to be <3.3 days. Calculated half-life that would rank picloram as leacher was calculated to be ~15.6 d. Using the current information for aminocycloprachlor, or using picloram data as representative of aminocycloprachlor behavior, scientists can now more accurately predict the potential for offsite transport of aminocycloprachlor.  相似文献   
7.
When analyzing the sorption characteristics of weakly sorbing or labile pesticides, batch methods tend to yield a high margin of error attributable to errors in concentration measurement and to degradation, respectively. This study employs a recently developed unsaturated transient flow method to determine the sorption of isoxaflutole's herbicidally active diketonitrile degradate (DKN) and dicamba. A 20-cm acrylic column was packed with soils with varied texture that had been uniformly treated with 14C-labeled chemical.The antecedent solution herbicide in equilibrium with sorbed phase herbicide was displaced by herbicide-free water, which was infiltrated into the column. Sorption coefficients, Kd, were obtained from a plot of total herbicide concentration in the soil versus water content in the region where the antecedent solution accumulated. DKN Kd values were approximately 2-3 times (average Kd = 0.71 L kg-1) greater using the unsaturated transient flow method as compared to the batch equilibration method in clay loam (Kd = 0.33 L kg-1), but similar for the two methods in sand (0.12 vs 0.09 L kg-1) soils. Dicamba Kd values were 3 times greater using the unsaturated transient flow method as compared to the batch equilibration method in the clay loam soil (0.38 vs 0.13 L kg-1), however, the Kd values were the same for the two methods in the sand (approximately 0.06 L kg-1). This demonstrates that to determine sorption coefficients for labile hydrophilic pesticides, an unsaturated transient flow method may be a suitable alternative to the batch method. In fact, it may be better in cases where transport models have overpredicted herbicide leaching when batch sorption coefficients have been used.  相似文献   
8.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   
9.
The sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolid-inimine ) (IMI) and its metabolites imidacloprid-urea (1-[(6-chloro-3-pyridinyl)-methyl]-2-imidazol-idinone) (IU), imidacloprid-guanidine (1-[(6-chloro-3-pyridinyl)-methyl]-4,5-dihydro-1H-imidazol-2-amine) (IG), and imidacloprid-guanidine-olefin (1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75-134) > or = IGO (2.87-72.3) > IMI (0.55-16.9) > IU (0.31-9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2 = 0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non-tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   
10.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号