首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
基础理论   2篇
污染及防治   2篇
评价与监测   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2012年   2篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Dynamics of the surface layer in different liquids is examined by means of infrared thermography of the surface and simultaneous velocity fields measurements using surface and infrared Particle Image Velocimetry. This technique allows measurements and comparison of two velocity fields—at the surface and at small depth about 50–200 μm. In distilled water the velocity fields at the surface and at small depth exhibit significant dissimilarity. The flow field below the surface is essentially 3D, whereas the surface flow is characterized by vanishing 2D divergence of velocity, indicating predominantly planar motion. In contrast, in ethanol–butanol mixture two velocity fields are well correlated, both corresponding to 3D flow with continuous surface renewal. Thermal patterns, observed at the surface, and the flow field structure in different liquids are associated with different boundary conditions for velocity at the surface. Water surface is seldom renewed, which inhibits heat and mass exchange between the liquid and atmosphere. However, absence of vertical advection also enables organisms to live within the surface layer, to stand and walk on the free surface. This is illustrated by the difficulties a water strider faces on the surface of ultrapure water, which exhibits Marangoni convection.  相似文献   
2.
Ramus K  Kopinke FD  Georgi A 《Chemosphere》2012,86(2):138-143
The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.  相似文献   
3.

The retention of heavy metal (HM) was studied in root and rhizomes (BLG), stems (ST), and leaves (LF) of Phragmites australis (common reed) seedlings collected from different locations, differing in the scale of anthropogenic interference. The analysis includes the reference samples of sediments in uncontaminated lake Garczonki and contaminated roadside ditch in Cieplewo. The concentrations of Zn, Cu, Pb, Cd, Ni, and Cr were analyzed in plant tissues and sediments using the atomic absorption spectrometry and inductively coupled plasma mass spectrometry. The general assessment of sediments collected in the Garczonki lake showed a good environmental status; while in the roadside ditch in Cieplewo, the sediments were considerably polluted with HM. In the first stage of plant growth, all of the analyzed HMs are mainly inhibited by BLG system. The decreasing trend of elements was as follows: BLG > ST > LF. The organs followed different decreasing trends of HM concentration; the trend Zn > Cu > Ni > Cr > Pb > Cd was found in ST and LF for the Garczonki lake seedlings and for BLG and LF for the roadside ditch in Cieplewo seedlings. Zn showed the highest concentration, while Cd the lowest concentration in each of the examined organs. The bioaccumulation factor indicated the higher mobility of HM in seedlings in the Garczonki lake than in the roadside ditch in Cieplewo. The morphological studies suggest the good state and health of seedling from both sites; however, the reduction of root hair surface was observed for the roadside ditch seedlings. The anatomical studies present changes in the size of the nucleus and count of chloroplasts in LF. No reaction on HM contamination sediments in the seedlings from the roadside ditch in Cieplewo in the aerenchyma was noted. Potentially, both types of seedlings can be used to decontaminate environments rich in HM. However, the level of HM absorbed by seedlings (in the first stage of growth) should be considered due to the behavior in the target phytoremediation site.

  相似文献   
4.
The silk weave spun by hornet larvae before undergoing pupal metamorphosis is composed of fibers and sheets, both containing symbiotic bacteria. The bacteria are secreted from the silk gland and are glued to the secreted silk, which is made up of amino-acid polymers. In the dark, it possesses at first an electric current amounting to several hundred nanoamperes (nA) (i.e., a thermoelectric property), and a high electric capacitance of up to several milliFarads (mF). This electrical charge is used gradually by the developing pupa. The symbiotic bacteria penetrate through slits in the coat of the silk fibers to the core or into pockets in the sheets, where they gradually digest parts of the silk weave, thereby nullifying its mechanical properties and facilitating in due time the egress of the imago from the puparium.  相似文献   
5.
Humic substances (HS) are widely used for diverse purposes. The effect of HS on the metal’s status in contaminated soils is contradictory. The aim of this work was to investigate the Cu migration in soils treated with HS. A model field experiment with the addition of Cu (1.243?mg?Cu/kg) and HS Extra® (potassium humate) was performed. The Cu addition resulted in acidification (by 0.7 pH) after 3 months. The major part of the added Cu remained in the upper 7-cm-thick soil layer; 4% reached the lower soil layer, while only 0.1% were removed beyond the profile. The addition of HS mitigated soil acidification increased the content of Cu bound to solid-phase organic substances and abruptly reduced the Cu activity in the soil liquid phase. Simultaneously, the HS addition increased the water-soluble organic substances (WSOS) by four times, including those in the hydrophilic and hydrophobic fractions, resulting in a twofold increase in the content of soluble Cu. Copper complexes with hydrophilic WSOS mainly reached lysimeters, and hydrophobic organic substances were absorbed by the soil. The HS addition to a slightly acidic soil can accelerate the migration of Cu to adjacent environments.  相似文献   
6.
Linear alkylbenzene sulfonate (LAS) is a group of anionic surfactants employed in the formulation of laundry and cleaning products, with a global production rate of 4 million metric tons. Sediments from the Polish coast of the southern Baltic Sea were collected at ten stations. Total LAS concentrations, measured by high-performance liquid chromatography, were between 0.04 and 0.72 mg LAS·kg(-1) dry weight. Highest LAS concentrations were found in suspended matter collected from the Vistula River, sediment collected close to the Vistula River mouth and from the Gdańsk Deep, known as the depositional area. With the obtained environmental LAS concentrations, a risk assessment for this surfactant has been carried out, based on publicly available acute and chronic toxicity data in target organisms. The results indicated that LAS could pose a low risk for the existing benthic community applying worst case scenario assessment. This is the first time that levels of LAS have been measured in environmental samples of the southern Baltic Sea.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号