首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2017年   1篇
  2005年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - This population-based study evaluated the short-term association between fine particulate matter (PM2.5) concentrations and its constituents and...  相似文献   
2.
This study focuses on the control of particulates with a fluidized-bed filter in exhaust gas stream. The fluidized-bed filter classified in the granular bed filtration technology was employed to demonstrate the performance for removal of fly ash at indicated operating velocities, fixed bed heights, and bed temperatures; then the collecting mechanisms of particulates by fluidized-bed filter were studied. The size distribution of fly ash passing through the fluidized-bed filter was also analyzed. The results indicate that at higher operating velocities and fixed bed heights, the removal of fly ash is more efficient and inertial impaction is the main mechanism when the fluidized-bed is operated at room temperature (25 degrees C). While operating at higher temperatures (200 degrees C), efficiency of 93.2% to 99.4% can be achieved for submicron particles. It is supposed to be the diffusion mechanism that is responsible for collecting such small particles, and high temperature is a favorable condition because of diffusion.  相似文献   
3.
Liu KY  Wey MY 《Chemosphere》2005,60(10):1341-1348
Fluidized bed filtration classified as granular bed filtration is a solution for removing particles from flue gas. Fine particles are captured by colliding with bed material. Binary mixtures including fines exist in the fluidized bed; the situation becomes more complex because the fines increases with time as particles enter continuously. Coal ash was put into the inlet gas of a gas-solid fluidized bed with silica sand and the variations in concentration with time was monitored, to elucidate the dynamic purification of fines by bed material and the interaction therewith. Water was injected into the inlet gas also to study the influence of water content on the removal of particles. Experimental results showed that the particle concentration rapidly increased with time until equilibrium was achieved. The outlet concentrations exceeded the inlet concentration (such that the removal efficiency was negative) at operating time between 26 and 30 min, yielding an efficiency as low as -35%. The removal efficiency increased with the relative humidity from 30% to 70%. The maximum cumulative collection ratios of particles (by mass) were 20%, 22% and 27% at humidities of 30%, 50% and 70%, declining to 7%, 13%, and 19% at the end.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号