首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
污染及防治   4篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - Biosorption is a viable and environmentally friendly process to remove pollutants and species of commercial interest. Biological materials are...  相似文献   
2.
Environmental Science and Pollution Research - Silica-based nanocomposite syntheses employ many harmful substances, which, in turn, demand the development of new synthetic environmental-friendly...  相似文献   
3.
Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for Cu(II), Fe(II), Zn(II), and Mn(II) removal from monoelemental solutions in aqueous medium, at pH 5.5, using batch procedures. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). Langmuir, Freundlich, and Dubinin-Radushkevich non-linear isotherm models were used to evaluate the data from the metal ion adsorption assessment. The maximum adsorption capacities (qmax) in monoelemental solution, calculated using the Langmuir isothermal model for Cu(II), Fe(II), Zn(II), and Mn(II), were respectively 24.61, 2.64, 23.04, and 5.92 mg/g for NLR; 2.29, 16.89, 1.97, and 2.88 mg/g for MLR; 0.81, 0.06, 0.83, and 0.46 mg/g for NSB; and 1.35, 2.89, 20.76, and 1.56 mg/g for MSB. The Freundlich n parameter indicated that the adsorption process was favorable for Cu(II) uptake by NLR; Fe(II) retention by MLR and MSB; and Zn(II) sorption by NSB, MLR, and NSB and favorable for all biomasses in the accumulation of Mn(II). The Dubinin-Radushkevich isotherm was applied to estimate the energy (E) and type of adsorption process involved, which was found to be a physical one between analytes and adsorbents. Organic groups such as O–H, C–O–C, CH, and C=O were found in the characterization of the biomass by FTIR. In the determination of the biomass surface charges by using blue methylene and red amaranth dyes, there was a predominance of negative charges.  相似文献   
4.
Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for the removal of Cu(II), Fe(II), Mn(II), and Zn(II) from multielemental solutions and lake water, in batch processes. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and chemically modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). The results showed higher adsorption efficiency for MSB and either NLR or MLR. The maximum adsorption capacities (qmax) in multielemental solution for Cu(II), Fe(II), Mn(II), and Zn(II) were 35.86, 31.42, 3.33, and 24.07 mg/g for NLR; 25.36, 27.95, 14.06, and 6.43 mg/g for MLR; 0.92, 3.94, 0.03, and 0.18 mg/g for NSB; and 54.11, 6.52, 16.7, and 1.26 mg/g for MSB, respectively. The kinetic studies with chemically modified biomasses indicated that sorption was achieved in the first 5 min and reached equilibrium around 30 min. Sorption of Cu(II), Fe(II), Mn(II), and Zn(II) in lake water by chemically modified biomasses was 24.31, 14.50, 8.03, and 8.21 mg/g by MLR, and 13.15, 10.50, 6.10, and 5.14 mg/g by MSB, respectively. These biosorbents are promising and low costs agricultural residues, and as for lettuce roots, these showed great potential even with no chemical modification.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号