首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   1篇
环保管理   9篇
综合类   3篇
基础理论   4篇
污染及防治   14篇
评价与监测   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2011年   3篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
  1986年   1篇
  1976年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有31条查询结果,搜索用时 933 毫秒
1.
Monitoring of Phenol in Wastewater Bioremediation by HPLC   总被引:1,自引:0,他引:1  
Bioremediation emphasizes the detoxification and destruction of toxic substances by microorganisms. Wastewater obtained from an industrial concern was solvent extracted with methyl alcohol and dichloromethane and analysed by GC/MS. Besides phenol, a large variety of organic compounds were detected. Under controlled laboratory conditions, the wastewater was innoculated with a mixed culture of microorganisms specially selected for their abilities to degrade phenol. Samples were collected at regular intervals from the stirred tank bioreactor and analysed for phenol by reverse phase HPLC with a C18 column. Results shows that from an initial phenol concentration of 987 ppm, slightly more than 50% was destroyed within 163 hours. The dry weight of the microorganisms and the plate count (CFU/ml) shows a steady increase from 0.5238 gms to 0.5355 gms and from 1.1E+9 to 1.94E+13 respectively over the same period. This suggested that the phenol was consumed by the microorganisms as the sole carbon source.  相似文献   
2.
Carbohydrates such as molasses are being added to aquifers to serve as electron donors for reductive dehalogenation of chloroethenes. Glucose, as a model carbohydrate, was studied to better understand the processes involved and to evaluate the effectiveness for dehalogenation of different approaches for carbohydrate addition. A simulation model was developed and calibrated with experimental data for the reductive dehalogenation of tetrachloroethene to ethene via cis-1,2-dichloroethene. The model included fermentors that convert the primary donor (glucose) into butyrate, acetate and hydrogen, methanogens, and two separate dehalogenator groups. The dehalogenation groups use the hydrogen intermediate as an electron donor and the different haloethenes as electron acceptors through competitive inhibition. Model simulations suggest first that the initial relative population size of dehalogenators and H(2)-utilizing methanogens greatly affects the degree of dehalogenation achieved. Second, the growth and decay of biomass from soluble carbohydrate plays a significant role in reductive dehalogenation. Finally, the carbohydrate delivery strategies used (periodic versus batch addition and the time interval between periodic addition) greatly affect the degree of dehalogenation that can be obtained with a given amount of added carbohydrate.  相似文献   
3.
4.
5.
Contamination of aquatic ecosystems with heavy metals has been receiving increased worldwide attention due to their harmful e ects on human health and other organisms in the environment. Most of the studies dealing with toxic e ects of metals deal with single metal species, while the aquatic organisms are typically exposed to mixtures of metals. Hence, in order to provide data supporting the usefulness of freshwater fish as indicators of heavy metal pollution, it has been proposed in the present study to investigate the bioaccumulation and depuration of chromium in the selected organs of freshwater fingerlings Cirrhinus mrigala, individually and in binary solutions with nickel. The results show that the kidney is a target organ for chromium accumulation, which implies that it is also the “critical” organ for toxic symptoms. The results further show that accumulation of nickel in all the tissues of C. mrigala is higher than that of chromium. In addition, the metal accumulations of the binary mixtures of chromium and nickel are substantially higher than those of the individual metals, indicating synergistic interactions between the two metals. Theoretically the simplest explanation for an additive joint action of toxicants in a mixture is that they act in a qualitatively similar way. The observed data suggest that C. mrigala could be suitable monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.  相似文献   
6.
Lead is a widespread element and one of the persistent and cumulative pollutants of the environment. The present study deals with the bioaccumulation of lead and the influence of chelating agents, meso 2,3-dimercaptosuccinic acid (DMSA), D-Penicillamine and CaNa2EDTA in reducing the concentration of lead on the selected organs of Catla catla fingerlings for both acute and chronic exposures by using ICP-AES. It is inferred from the present findings that there was a correlation between environmental conditions and the heavy metal contents of the fish. The highest concentration of lead is found in kidney tissues and the lowest in muscle tissues. The accumulation pattern of lead in the selected organs of Catla catla is: kidney > liver > gill > brain > muscle. Also, it has been found that the treatment of chelating agents, DMSA, D-Penicillamine and CaNa2EDTA reduces the concentration of lead significantly for both acute and chronic exposures. The results also show that DMSA is the most effective chelator of lead in reducing the body burden of C. catla fingerlings. The observed data further indicate that C. catla could be suitable for monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.  相似文献   
7.
Investigations have shown that near- and mid-infrared reflectance spectroscopy can accurately determine organic-C in soil. Efforts have also demonstrated that both can differentiate between organic and inorganic-C in soils, but the mid-infrared produces more accurate calibrations. Nevertheless, the greatest benefit would come with in situ determinations where factors such as particle size, sample heterogeneity and moisture can be important. While the variations in large (> 20 mesh) particle size can adversely effect calibration accuracy, efforts have demonstrated that the scanning of larger amounts of sample can overcome this, but the effects of moisture have not been fully explored. While under in situ conditions C distribution and sample heterogeneity are a problem for any analytical method, the rapid analysis possible with spectroscopic techniques will allow many more samples to be analyzed. In conclusion, near- and mid-infrared spectroscopy have great potential for providing the C values needed for C sequestration studies.  相似文献   
8.
At the Canadian Forces Base, Borden, hexachloroethane (HCE) that was introduced into an unconfined sand aquifer disappeared rapidly, with a half-life of about 40 days. Laboratory-scale studies, initiated to help assess the fate of HCE, indicated that it is reductively biotransformed to tetrachloroethylene (PCE) both by aerobic cultures of wastewater microflora and by microcosms containing unhomogenized Borden aquifer material. The results also indicate that the agents involved in the aquifer transformation of HCE to PCE are not homogeneously distributed in the aquifer material.  相似文献   
9.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   
10.
Smelter waste deposits pose an environmental threat worldwide. Biosolids are potentialy useful in reclamation of such sites. Biological aspects of revegetation of Zn and Pb smelter wastelands using biosolids are discussed in this report. The goal of the studies was to assess to what extent biosolid treatment would support ecosystem functioning as measured by biological indicators such as enzyme activities of revegetated metal waste or plant growth. Another crucial aspect was related to the assessment of metal transfer to the ecosystem which could affect the health of local fauna and also create a food chain risk. A field experiment was conducted on a smelter waste deposit in Piekary Slaskie, Silesia, Poland, with two separate fields - established on wastes from the Welz and Doerschel smelting processes. The tested methods allowed revegetation of the fields - application of municipal biosolid at the rate 300 dry t ha(-1) combined with the incorporation of commercial lime in a mixed oxide and carbonate form at the rate of 1.5 and 30 t for Welz waste or use of a 30 cm by-product lime cap followed by incorporation of biosolid at a rate of 300 t ha(-1) for the more acidic Doerschel waste. Studies on biological activities demonstrated that the reclamation methods used are an effective way to establish new, fully-functioning ecosystems that support plant growth. They also provided strong evidence that forage crops grown on Zn, Cd and Pb contaminated sites reclaimed using lime and biosolids do not pose identified risk for wildlife and food safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号