首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
污染及防治   1篇
  2000年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The effect of ozone on below-ground carbon allocation in wheat   总被引:15,自引:0,他引:15  
Short-term (14)CO(2) pulse and chase experiments were conducted in order to investigate the effect of ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivum L. 'ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone (38-40 ppm-h) or low ozone (23-31 ppm-h) for 21 days in a series of replicated experiments. Following the ozone exposures, the plants were pulsed with (14)CO(2) and allocation of (14)C-labeled photosynthate was measured in the plant and growth media. Soluble root exudates were measured, without disturbing the plant roots, 24 h after the (14)CO(2) pulse. Shoot biomass was reduced by 17% for the high ozone and 9% for the low ozone exposures, relative to control treatments. Root biomass was reduced by 9% for the high ozone exposures, but was not significantly different than the controls for the low ozone. The amount of (14)C activity in the shoot and root tissue 24 h after the (14)CO(2) pulse, normalized to tissue weight, total (14)CO(2) uptake, or the total (14)C retention in each plant, was not affected by either high or low ozone exposures. The amount of (14)C activity measured in the growth media solution surrounding the roots increased 9% for the high ozone exposures, and after normalizing to root size or root (14)C activity, the growth media solution (14)C activity increased 29 and 40%, respectively. Total respiration of (14)CO(2) from the ozone-treated plants decreased, but the decrease was not statistically significant. Our results suggest that soluble root exudation of (14)C activity to the surrounding rhizosphere increases in response to ozone. Increased root exudation to the rhizosphere in response to ozone is contrary to reports of decreased carbon allocation below ground and suggests that rhizosphere microbial activity may be initially stimulated by plant exposure to ozone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号