首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
废物处理   1篇
环保管理   4篇
综合类   1篇
基础理论   2篇
污染及防治   10篇
评价与监测   1篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2005年   3篇
  2001年   2篇
  1995年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Odor pollution is a major problem facing mushroom [Agaricus bisporus (Lange) Imbach] compost production. Techniques for quantifying mushroom composting odors are needed to assess the effectiveness of odor control measures. Odor samples were obtained in nalophane bags from 11 mushroom composting sites. Samples were collected 0.2 m downwind from the pre-wetting heaps (aerated or unaerated) of raw composting ingredients (wheat straw, poultry and horse manures, and gypsum) and subsequent Phase I composting windrows or aerated tunnels. The odor concentrations (OCs) of the samples were assessed using serial dilution olfactometry and the chemical composition of the samples was determined using gas chromatography-mass spectrometry (GC-MS), both 24 h after sampling. Gas detector tubes were used for on-site measurement of gaseous compounds. Odorants that exceeded their published olfactory detection thresholds by the greatest order of magnitude, in decreasing order, were: H2S, dimethyl sulfide (DMS), butanoic acid, methanethiol, and trimethylamine. Concentrations of NH3 were not significantly correlated with OC, and they were not significantly affected by the use of aeration. Aeration reduced the OC and the combined H2S + DMS concentrations by 87 and 92%, respectively. There was a very close correlation (r = 0.948, P < 0.001) between the OC of bag samples and the combined H2S + DMS concentrations, measured on-site with detector tubes. This relationship was unaffected by the NH3 concentration or the type of compost: aerated or unaerated, pre-wet or Phase I, poultry manure-based or horse and poultry manure-based compost. Prediction of the OC will enable rapid and low-cost identification of odor sources on mushroom composting sites.  相似文献   
2.
ABSTRACT

Pig production systems in China are shifting from small to industrial scale. Significant variation in housing ammonia (NH3) emissions can exist due to differences in diet, housing design, and management practices. However, there is a knowledge gap regarding the impacts of farm-scale in China, which may be critical in identifying hotspots and mitigation targets. Here, continuous in-situ NH3 concentration measurements were made at pig farms of different scales for sows and fattening pigs over periods of 3–6 days during two different seasons (summer vs. winter). For the sow farms, NH3 emission rates were greater at the small farm (summer: 0.52 g pig?1 hr?1; winter: 0.21 g pig?1 hr?1) than at the large farm (summer: 0.34 g pig?1 hr?1; winter: 0.12 g pig?1 hr?1). For the fattening pig farms, NH3 emission rates were greater at the large farm (summer: 0.22 g pig?1 hr?1; winter: 0.16 g pig?1 hr?1) than at the small farm (summer: 0.19 g pig?1 hr?1; winter: 0.07 g pig?1 hr?1). Regardless of farm scale, the NH3 emission rates measured in summer were greater than those in winter; the NH3 emission rates were greater in the daytime than at the nighttime; a positive relationship (R2 = 0.06–0.68) was established between temperature and NH3 emission rate, whereas a negative relationship (R2 = 0.10–0.47) was found between relative humidity and NH3 emission rate. The effect of farm-scale on indoor NH3 concentration could mostly be explained by the differences in ventilation rates between farms. The diurnal variation in NH3 concentration could be partly explained by ventilation rate (R2 = 0.48–0.78) in the small traditional farms and by emission rate (R2 = 0.26–0.85) in the large industrial farms, except for the large fattening pig farm in summer. Overall, mitigation of NH3 emissions from sow farms should be a top priority in the North China Plain.

Implications: The present study firstly examined the farm-scale effect of ammonia emissions in the North China Plain. Of all farms, the sow farm was identified as the greatest source of ammonia emission. Regardless of farm scale, ammonia emission rates were observed to be higher in summer. Ammonia concentrations were mostly higher in the large industrial farms partly due to lower ventilation rates than in the small traditional farms.  相似文献   
3.
PM(2.5) and VOCs (benzene, toluene, m-p-o-xylenes) concentrations were measured in an urban and a suburban site in Athens, Greece, during the period between April and November 2004. This period, which is considered to be the warmer period in Greece, is characterized by the development of sea-breeze over the Attica Basin. Additionally strong Northern, North-eastern winds called "The Etesians", predominate during the summer months (July-August), acting positively to the dispersion of pollutants. In this campaign, 24 days with sea-breeze development were observed, 15 days with northern winds, 6 days with southern winds while the rest of the days presented no specific wind profile. Maximum concentrations of PM(2.5), VOCs and nitrogen oxides, were detected during the days with sea-breeze, while minimum concentrations during the days with northern winds. Ozone was the only pollutant that appeared to have higher concentrations in the background site and not in the city centre, where benzene presented strong negative correlation with ozone, indicating the photochemical reaction of hydrocarbons that lead to the ozone formation. The BTX ratios were similar for both sites and wind profiles, indicating common sources for those pollutants. T/B ratio ranged in low levels, between 3-5 for site A and 2-5 for site B, suggesting vehicles emissions as the main sources of volatile compounds. Finally, the strong correlations of PM(2.5) and benzene concentrations, between the two sampling sites, indicate that both the city centre and the background site, are affected by the same sources, under common meteorological conditions (sea-breeze, northern winds).  相似文献   
4.
Six N-flow models, used to calculate national ammonia (NH3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisation: (a) standardized inputs to all models (FF scenario); (b) standard N excretion, but national values for emission factors (EFs) (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario for beef cattle produced very similar estimates of total losses of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available at spreading differed by a factor of almost 3. Results of the FF scenario for broilers produced a range of estimates of total changes in TAN (±9% of the mean total), and larger differences in the estimate of NH3 emissions (±17% of the mean). The different approaches among the models to TAN immobilization, other N losses and mineralization, produced estimates of TAN available at spreading which differed by a factor of almost 1.7. The differences in estimates of NH3 emissions decreased as estimates of immobilization and other N losses increased. Since immobilization and denitrification depend also on the C:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN concentrations in litter-based manures and further validation of model outputs.  相似文献   
5.
Most ammonia (NH3) emission inventories have been calculated on an annual basis and do not take into account the seasonal variability of emissions that occur as a consequence of climate and agricultural practices that change throughout the year. When used as input to atmospheric transport models to simulate concentration fields, these models therefore fail to capture seasonal variations in ammonia concentration and dry and wet deposition. In this study, seasonal NH3 emissions from agriculture were modelled on a monthly basis for the year 2000, by incorporating temporal aspects of farming practice. These monthly emissions were then spatially distributed using the AENEID model (Atmospheric Emissions for National Environmental Impacts Determination). The monthly model took the temporal variation in the magnitude of the ammonia emissions, as well as the fine scale (1-km) spatial variation of those temporal changes into account to provide improved outputs at 5-km resolution. The resulting NH3 emission maps showed a strong seasonal emission pattern, with the highest emissions during springtime (March and April) and the lowest emissions during summer (May to July). This emission pattern was mainly influenced by whether cattle were outside grazing or housed and by the application of manures and fertilizers to the land. When the modelled emissions were compared with measured NH3 concentrations, the comparison suggested that the modelled emission trend corresponds fairly well with the seasonal trend in the measurements. The remaining discrepancies point to the need to develop functional parametrisations of the interactions with climatic seasonal variation.  相似文献   
6.
The purpose of this work is to relate the results and the conclusions which arose from the operation of nuclear plants from many years and from the application various radioecological models which describe the diffusing and the burdening of ecological system with radioactive substances in relation to the general problem of the pollution of the environment with whatever type of radioactive filthiness.

It is believed that the findings resulting from such comparison will be very interesting and will contribute to the taking of the right measures to face the pollution of the environment. This study is very important for countries such as Greece which has no nuclear plants but has a rapidly developed industry. The research has been mainly concentrated to the industrial area of Thessaloniki (Sindos) which is considered as the main source of diffused filthiness and which in the last few years has caused serious problems of pollution to the wider area of Thessaloniki.  相似文献   
7.
Urea is an important source of ammonia (NH3) emissions to the atmosphere from agricultural soils. Abatement strategies are necessary in order to achieve NH3 emission targets by reducing those emissions. In this context, a field experiment was carried out on a sunflower crop in spring 2006 with the aim of evaluating the effect of the N-(n-butyl) thiophosphoric triamide (NBPT) in the mitigation of volatilized NH3 from a urea-fertilised soil. Ammonia emission was quantified, using the integrated horizontal flux (IHF) method, following application of urea with and without the urease inhibitor NBPT. Urea and a mixture of urea and NBPT (0.14%, w/w) were surface-applied at a rate of 170 kg N ha−1 to circular plots (diameter 40 m). The soil was irrigated with 10 mm of water just after the application of urea to dissolve and incorporate it into the upper layer of soil. Over the duration of the measurement period (36 days) three peaks of NH3 were observed. The first peak was associated with hydrolysis of urea after irrigation and the others with the increase of ammonia in soil solution after changes in atmospheric variables such as wind speed and rainfall. The total NH3 emission during the whole experiment was 17.3 ± 0.5 kg NH3–N ha−1 in the case of urea treated soils and 10.0 ± 2.2 kg NH3–N ha−1 where NBPT was included with the urea (10.1 and 5.9%, respectively, of the applied urea–N). The lower NH3 emissions from plots fertilised with urea + NBPT, compared with urea alone, were associated with a reduction in urease activity during the first 9 days after inhibitor application. This reduction in enzymatic activity promoted a decrease in the exchangeable NH4+ pool.  相似文献   
8.
Ammonia (NH3) emission from land application of manure is typically measured using the integrated horizontal flux (IHF) micrometeorological method. However, there are some situations in which alternative techniques (such as an inverse dispersion modelling technique) might be preferable, for example when measuring from large or irregularly shaped source areas. In this study, an inverse dispersion technique using the backward Lagrangian stochastic (bLS) model, with 2 different experimental configurations, was compared with the Integrated Horizontal Flux method (i.e. IHF), which was used as reference technique. Pig slurry was surface-applied at 125 kg N ha?1 to bare soil on a large plot (80 × 125 m). Cumulative emissions were 19.3, 21.2 and 18.4 kg N ha?1 from the IHF and the bLS technique (experimental configurations I and II), respectively. Mean flux within each sampling period as estimated by the two techniques compared extremely well, with a slope not significantly different from 1 and r2 of 0.99. Although limited in extent, this dataset agree with a previous study in demonstrating the use of the bLS technique with longer period time-averaged concentration measurements.  相似文献   
9.
There is a lack of information on ammonia (NH3) emissions from cattle housing systems in Mediterranean countries, with most published data deriving from NW Europe. An investigation was carried out in NW Portugal to quantify NH3 emissions for the main types of dairy cattle buildings in Portugal, i.e. naturally ventilated buildings and outdoor concrete yards, and to derive robust emission factors (EFs) for these conditions and compare with EFs used elsewhere in Europe. Measurements were made throughout a 12-month period using the passive flux sampling method in the livestock buildings and the equilibrium concentration technique in outdoor yards.The mean NH3 emission factor for the whole housing system (buildings + outdoor yards) was 43.7 g NH3–N LU?1 day?1 and for outdoor concrete yards used by dairy cattle was 26.6 g NH3–N LU?1 day?1. Expressing NH3 emission in terms of the quantity of liquid milk produced gave similar values across the three dairy farms studied (with a mean of 2.3 kg N ton-milk?1 produced) and may have advantages when comparing different farming systems. In dairy houses with outdoor yards, NH3 emissions from the yard area contributed to 69–92% of total emissions from this housing system. Emissions were particularly important during spring and summer seasons from outdoor yards with NH3 emitted in this period accounting for about 72% of annual emissions from outdoor yards. Mean NH3 emission factors derived for this freestall housing system and outdoor concrete yards used by dairy cattle in Portugal were higher than those measured in northern Europe. In addition, values of animal N excretion estimated in this study were greater than official National standard values. If these emissions are typical for Portuguese dairy systems, then the current National inventory underestimates emissions from this source in NW of Portugal, because of the use of lower standard values of N excretion by dairy cattle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号