首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   1篇
综合类   1篇
污染及防治   3篇
评价与监测   1篇
灾害及防治   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 78 毫秒
1
1.
The aim of the current research was to systematically review and summarize the studies that evaluated the concentration of lead (Pb) and cadmium (Cd) in cow milk in different regions of Iran and to perform a meta-analysis of the findings. Moreover, the non-carcinogenic and carcinogenic risks of Pb and Cd through milk consumption in adult and child consumers were assessed. As a result of a systematic search in the international and national databases between January 2008 and October 2018, 17 reports involving 1874 samples were incorporated in our study for meta-analysis. The pooled concentrations of Pb and Cd were estimated to be 13.95 μg mL−1 (95% CI 9.72–18.11 μg mL−1) and 3.55 μg mL−1 (95% CI − 2.38–9.48 μg mL−1), respectively, which were lower than the WHO/FAO and national standard limits. The estimated weekly intake (EWI) of Pb and Cd through consuming milk was 16.65 and 7 μg day−1 for adults of 70 kg and 45 and 34 μg day−1 for children of 26 kg, respectively, which was well below the risk values set by Joint FAO/WHO Expert Committee on Food Additives (JECFA). The maximum target hazard quotient values (THQs) of Pb and Cd were 5.55E−5 and 5.55E−5 for adults and 5.55E−5 and 5.55E−5 for children, respectively, which were lower than 1 value, suggesting that Iranian consumers are not exposed to non-carcinogenic risk through consuming milk. Moreover, the incremental lifetime cancer risk (ILCR) of Pb estimated to be 2.96E−04 in adults and 1.0E−03 in children, indicating that consumers in Iran are at threshold carcinogenic risk of Pb through consuming milk (ILCR > 10−4). Therefore, planning and policy making for the sustainable reduction of these toxic metals in milk, particularly in industrial regions of Iran, are crucial.  相似文献   
2.
In this research, probable arsenic contamination in drinking water in the city of Ardabil was studied in 163 samples during four seasons. In each season, sampling was carried out randomly in the study area. Results were analyzed statistically applying SPSS 19 software, and the data was also modeled by Arc GIS 10.1 software. The maximum permissible arsenic concentration in drinking water defined by the World Health Organization and Iranian national standard is 10 μg/L. Statistical analysis showed 75, 88, 47, and 69% of samples in autumn, winter, spring, and summer, respectively, had concentrations higher than the national standard. The mean concentrations of arsenic in autumn, winter, spring, and summer were 19.89, 15.9, 10.87, and 14.6 μg/L, respectively, and the overall average in all samples through the year was 15.32 μg/L. Although GIS outputs indicated that the concentration distribution profiles changed in four consecutive seasons, variance analysis of the results showed that statistically there is no significant difference in arsenic levels in four seasons.  相似文献   
3.
Simultaneous removal of nitrate ([Formula: see text]) and natural organic matter (NOM) from drinking water using a hybrid heterotrophic/autotrophic/BAC bioreactor (HHABB) was studied in continuous mode. The HHABB consisted of three compartments: ethanol heterotrophic part, sulfur autotrophic part, and biological activated carbon (BAC)-part (including anoxic and aerobic sections). Experiments were performed with [Formula: see text] concentration 30?mg N/L, [Formula: see text] loading rate 0.72?kg N/m(3)/d, C?:?N ratio 0.53, and three concentrations of NOM (0.6, 2.6, and 5.7?mg C/L). Overall denitrification rate and efficiency of the HHABB were not affected by NOM concentration and were in the suitable ranges of 0.69-0.70?kg N/m(3)/d and 96.0%-97.7%, respectively. NOM removal at concentration 0.6?mg C/L was not efficient because of organic carbon replacement as soluble microbial products. At higher NOM concentrations, total NOM removal efficiencies were 55%-65%, 55%-70%, and 55%-65% for dissolved organic carbon, trihalomethane formation potential, and UV absorbance at 254?nm (UV(254)), respectively. The more efficient compartments of the HHABB for the removal of NOM were the ethanol heterotrophic phase and aerobic BAC-phase. The efficiency of the HHABB in the removal of NOM was considerable, and the effluent dissolved organic carbon and trihalomethane formation potential concentrations were relatively low. This study indicated that the HHABB without the anoxic BAC-phase could be a feasible alternative for simultaneous removal of [Formula: see text] and NOM from drinking water at full scale.  相似文献   
4.
Environmental Science and Pollution Research - Water quality is one of the most important indices for public health especially for drinking water consumptions. This study was conducted to survey...  相似文献   
5.
Mitigation and Adaptation Strategies for Global Change - Cities can be severely affected by climate change. Hence, many of them have started to develop climate adaptation strategies or implement...  相似文献   
6.
In this research the feasibility of aerated in-vessel composting process followed by chemical oxidation with H2O2 and Fenton for removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated. The ratios of the sludge to immature compost were 1:0 (as abiotic control), 1:2, 1:4, 1:6, 1:8 and 1:10 (as dry basis) at a C:N:P ratio of 100:5:1 and 55 % moisture content for a period of 10 weeks. Six concentrations of H2O2 and Fenton were added to the compost mixture for a period of 24- and 48-h reaction times. Results showed that petroleum hydrocarbons removal in ratios of 1:2, 1:4, 1:6, 1:8 and 1:10 were 66.6, 73.2, 74.8, 80.2 and 79.9 %, respectively. The results of the abiotic experiments indicated that the main mechanism of hydrocarbon removal in the composting reactors was biological. The application of combined composting and chemical oxidation demonstrated a remarkable (about 88 %) overall removal. The study showed that in-vessel composting combined with chemical oxidation is a viable choice for the remediation of the sludge.  相似文献   
7.
Environmental Science and Pollution Research - Diazinon is a widely used pesticide that can be effectively degraded in aqueous solutions via photocatalytic oxidation. This quantitative systematic...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号