首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   2篇
污染及防治   3篇
评价与监测   1篇
  2021年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Monitoring of Phenol in Wastewater Bioremediation by HPLC   总被引:1,自引:0,他引:1  
Bioremediation emphasizes the detoxification and destruction of toxic substances by microorganisms. Wastewater obtained from an industrial concern was solvent extracted with methyl alcohol and dichloromethane and analysed by GC/MS. Besides phenol, a large variety of organic compounds were detected. Under controlled laboratory conditions, the wastewater was innoculated with a mixed culture of microorganisms specially selected for their abilities to degrade phenol. Samples were collected at regular intervals from the stirred tank bioreactor and analysed for phenol by reverse phase HPLC with a C18 column. Results shows that from an initial phenol concentration of 987 ppm, slightly more than 50% was destroyed within 163 hours. The dry weight of the microorganisms and the plate count (CFU/ml) shows a steady increase from 0.5238 gms to 0.5355 gms and from 1.1E+9 to 1.94E+13 respectively over the same period. This suggested that the phenol was consumed by the microorganisms as the sole carbon source.  相似文献   
2.
Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria's carbon source. Six natural organic materials were characterized in order to investigate how well these promote sulphate reduction and metal precipitation by SRB. Maple wood chips, sphagnum peat moss, leaf compost, conifer compost, poultry manure and conifer sawdust were investigated in terms of their carbon (TOC, TIC, DOC) and nitrogen (TKN) content, as well as their easily available substances content (EAS). Single substrates, ethanol, a mixture of leaf compost (30% w/w), poultry manure (18% w/w), and maple wood chips (2% w/w), and the same mixture spiked with formaldehyde were then tested in a 70-day batch experiment to evaluate their performance in sulphate reduction and metal removal from synthetic AMD. Metal removal efficiency in batch reactors was as high as 100% for Fe, 99% for Mn, 99% for Cd, 99% for Ni, and 94% for Zn depending on reactive mixtures. Early metal removal (0-12d) was attributed to the precipitation of (oxy)hydroxides and carbonate minerals. The lowest metal and sulphate removal efficiency was found in the reactor containing poultry manure as the single carbon source despite its high DOC and EAS content. The mixture of organic materials was most effective in promoting sulphate reduction, followed by ethanol and maple wood chips, and single natural organic substrates generally showed low reactivity. Formaldehyde (0.015% (w/v)) provided only temporary bacterial inhibition. Although characterization of substrates on an individual basis provided insight on their chemical make-up, it did not give a clear indication of their ability to promote sulphate reduction and metal removal.  相似文献   
3.
Acid mine drainage (AMD), characterized by low pH and high concentrations of sulfate and heavy metals, is an important and widespread environmental problem related to the mining industry. Sulfate-reducing passive bioreactors have received much attention lately as promising biotechnologies for AMD treatment. They offer advantages such as high metal removal at low pH, stable sludge, very low operation costs, and minimal energy consumption. Sulfide precipitation is the desired mechanism of contaminant removal; however, many mechanisms including adsorption and precipitation of metal carbonates and hydroxides occur in passive bioreactors. The efficiency of sulfate-reducing passive bioreactors is sometimes limited because they rely on the activity of an anaerobic microflora [including sulfate-reducing bacteria (SRB)] which is controlled primarily by the reactive mixture composition. The most important mixture component is the organic carbon source. The performance of field bioreactors can also be limited by AMD load and metal toxicity. Several studies conducted to find the best mixture of natural organic substrates for SRB are reviewed. Moreover, critical parameters for design and long-term operation are discussed. Additional work needs to be done to properly assess the long-term efficiency of reactive mixtures and the metal removal mechanisms. Furthermore, metal speciation and ecotoxicological assessment of treated effluent from on-site passive bioreactors have yet to be performed.  相似文献   
4.
A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.  相似文献   
5.
Environmental Science and Pollution Research - The effectiveness of compost, peat-calcite, and wood ash to remove Ni from a circum-neutral-contaminated mine water was tested in continuous flow...  相似文献   
6.
Neculita CM  Yim GJ  Lee G  Ji SW  Jung JW  Park HS  Song H 《Chemosphere》2011,83(1):76-82
Bioreactors are one possible best sustainable technology to address the mine-impacted water problems. Several prospective substrates (mushroom compost, cow manure, sawdust, wood chips, and cut rice straw) were characterized for their ability to serve as a source of food and energy for sulfate-reducing bacteria. Twenty bench-scale batch bioreactors were then designed and set up to investigate relative effectiveness of various mixtures of substrates to that of mushroom compost, the most commonly used substrate in field bioreactors, for treating mine drainage with acidic (pH 3) and moderate pH (pH 6). Overall, reactive mixtures showed satisfactory performances in generating alkalinity, reducing sulfate and removing metals (Al>Fe>Mn) (up to 100%) at both pH conditions, for all substrates. The mixture of sawdust and cow manure was found as the most effective whereas the mixture containing 40% cut rice straw gave limited efficiency, suggesting organic carbon released from this substrate is not readily available for biodegradation under anaerobic conditions. The mushroom compost-based bioreactors released significant amount of sulfate, which may raise a more concern upon the start-up of field-scale bioreactors. The correlation between the extent of sulfate reduction and dissolved organic carbon/SO(4)(2-) ratio was weak and this indicates that the type of dissolved organic carbon plays a more important role in sulfate reduction than the absolute concentration and that the ratio is not sensitive enough to properly describe the relative effectiveness of substrate mixtures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号