首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
Environmental Science and Pollution Research - A lipid peroxidation product, malondialdehyde (MDA), was studied in Vardar chub (Squalius vardarensis Karaman) as an indicator of oxidative stress,...  相似文献   
2.
The assessment of general condition of fish in the moderately contaminated aquatic environment was performed on the European chub (Squalius cephalus) caught in September 2009 in the Sutla River in Croatia. Although increases of the contaminants in this river (trace and macro elements, bacteria), as well as physico-chemical changes (decreased oxygen saturation, increased conductivity), were still within the environmentally acceptable limits, their concurrent presence in the river water possibly could have induced stress in aquatic organisms. Several biometric parameters, metallothionein (MT), and total cytosolic protein concentrations in chub liver and gills were determined as indicators of chub condition. Microbiological and parasitological analyses were performed with the aim to evaluate chub predisposition for bacterial bioconcentration and parasitic infections. At upstream river sections with decreased oxygen saturation (~50 %), decreased Fulton condition indices were observed (FCI: 0.94 g?cm?3), whereas gonadosomatic (GSI: 2.4 %), hepatosomatic (HSI: 1.31 %), and gill indices (1.3 %) were increased compared to oxygen rich downstream river sections (dissolved oxygen ~90 %; FCI: 1.02 g?cm?3; GSI: 0.6 %; HIS: ~1.08 %; gill index: 1.0 %). Slight increase of MT concentrations in both organs at upstream (gills: 1.67 mg?g?1; liver: 1.63 mg?g?1) compared to downstream sites (gills: 1.56 mg?g?1; liver: 1.23 mg?g?1), could not be explained by induction caused by increased metal levels in the river water, but presumably by physiological changes caused by general stress due to low oxygen saturation. In addition, at the sampling site characterized by inorganic and fecal contamination, increased incidence of bacterial bioconcentration in internal organs (liver, spleen, kidney) was observed, as well as decrease of intestinal parasitic infections, which is a common finding for metal-contaminated waters. Based on our results, it could be concluded that even moderate contamination of river water by multiple contaminants could result in unfavourable living conditions and cause detectable stress for aquatic organisms.  相似文献   
3.
The distribution of essential elements Co, Cu, Fe, Mn, Se, and Zn, and nonessential element Cd among cytosolic proteins of different molecular masses in the gills of European chub (Squalius cephalus) sampled in the moderately contaminated Sutla River in September of 2009, was studied after the protein separation by size exclusion high-performance liquid chromatography (SEC-HPLC), and the metal determination in the obtained fractions by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The aims of the study were to characterize the distribution profiles of metals within different protein categories in gills in the conditions of low metal exposure in the river water, and to compare them with the previously published hepatic profiles. The distribution profiles of analyzed metals were mainly characterized with several peaks. However, some observations could be emphasized: both Cu and Cd were eluted near metallothionein elution time; elution time of one of Co peaks could be associated with Co-containing compound cobalamin; increasing cytosolic Fe concentrations resulted in possible Fe binding to storage protein ferritin; both Mn and Zn had poorly resolved peaks covering wide ranges of molecular masses and indicating their binding to various proteins; both Zn and Se increased in protein fractions of molecular masses <5 kDa following their concentration increase in the gill cytosol; expected clear metallothionein peak was not observed for Zn. Comparison of gill profiles with previously published hepatic profiles revealed similar and in case of some elements (e.g., Co, Fe, Mn, and Se) almost identical distributions in both organs regarding elution times. On the contrary, heights of obtained peaks were different, indicating possible metal binding to the same proteins in the gills and liver, but in different proportions. The results obtained in this study can be used as a basis for comparison in monitoring studies, for identification of changes that would occur after exposure of chub to increased metal concentrations.  相似文献   
4.

Purpose

To examine if chronic exposure of feral fish to elevated Pb concentrations in the river water (up to 1???g?L?1), which are still lower than European recommendations for dissolved Pb in surface waters (7.2???g?L?1; EPCEU (Official J L 348:84, 2008)), would result in Pb accumulation in selected fish tissues.

Methods

Lead concentrations were determined by use of HR ICP-MS in the gill and hepatic soluble fractions of European chub (Squalius cephalus) caught in the Sutla River (Croatia?CSlovenia).

Results

At the site with increased dissolved Pb in the river water, soluble gill Pb levels (17.3???g?L?1) were approximately 20 times higher compared to uncontaminated sites (0.85???g?L?1), whereas the ratio between contaminated (18.1???g?L?1) and uncontaminated sites (1.17???g?L?1) was lower for liver (15.5). Physiological variability of basal Pb concentrations in soluble gill and hepatic fractions associated to fish size, condition, sex, or age was not observed, excluding the possibility that Pb increase in chub tissues at contaminated site could be the consequence of studied biotic parameters. However, in both tissues of Pb-exposed specimens, females accumulated somewhat more Pb than males, making female chubs potentially more susceptible to possible toxic effects.

Conclusions

The fact that Pb increase in gill and hepatic soluble fractions of the European chub was not caused by biotic factors and was spatially restricted to one site with increased dissolved Pb concentration in the river water points to the applicability of this parameter as early indicator of Pb exposure in monitoring of natural waters.  相似文献   
5.
Association of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements with cytosolic proteins of different molecular masses was described for the liver of European chub (Squalius cephalus) from weakly contaminated Sutla River in Croatia. The principal aim was to establish basic trace element distributions among protein fractions characteristic for the fish living in the conditions of low metal exposure in the water. The fractionation of chub hepatic cytosols was carried out by size exclusion high performance liquid chromatography (SE-HPLC; Superdex? 200 10/300 GL column), and measurements were performed by high resolution inductively coupled plasma mass spectrometry (HR ICP-MS). Elution profiles of essential elements were mostly characterized by broad peaks covering wide range of molecular masses, as a sign of incorporation of essential elements in various proteins within hepatic cytosol. Exceptions were Cu and Fe, with elution profiles characterized by sharp, narrow peaks indicating their probable association with specific proteins, metallothionein (MT), and ferritin, respectively. The main feature of the elution profile of nonessential metal Cd was also single sharp, narrow peak, coinciding with MT elution time, and indicating almost complete Cd detoxification by MT under the conditions of weak metal exposure in the water (dissolved Cd concentration ≤0.3 μg L?1). Contrary, nonessential metal Pb was observed to bind to wide spectrum of proteins, mostly of medium molecular masses (30–100 kDa), after exposure to dissolved Pb concentration of ~1 μg L?1. The obtained information within this study presents the starting point for identification and characterization of specific metal/metalloid-binding proteins in chub hepatic cytosol, which could be further used as markers of metal/metalloid exposure or effect on fish.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号