首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
废物处理   1篇
综合类   1篇
基础理论   2篇
污染及防治   6篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Ohura T  Kitazawa A  Amagai T 《Chemosphere》2004,57(8):831-837
The occurrence of a mutagenic compound, 1-chloropyrene (Cl-Py), in extracts of ambient particulate matter at an urban site in Japan has been investigated. Samples were collected with a high-volume air sampler for 24 h periods over the course of 1 week in winter (February), spring (May), summer (August), and autumn (November) 2002. The Cl-Py levels showed seasonal variation, ranging from 2.4 pg/m(3) (summer) to 18.9 pg/m(3) (winter). This variation would indicate that the lower temperatures in winter results in an increased distribution of Cl-Py from vapor phase to the particle phase. In addition, there is also the possibility that ambient Cl-Py is emitted from seasonal sources or is susceptible to photodegradation by sunlight, or both. The photodegradation of Cl-Py in a laboratory experiment was conducted to simulate the compound's fate on airborne particle surfaces. The degradation of Cl-Py proceeded by a first-order reaction with a rate constant of 0.72 h(-1). In the presence of a radical sensitizer, 9,10-anthraquinone (AQ), the photodegradation rate of Cl-Py was elevated in comparison with the rate in the absence of AQ. In addition, the dechlorination of Cl-Py (i.e., the formation of Py) occurred in the presence of AQ.  相似文献   
2.
Highly portable, sensitive, and selective passive air samplers were used to investigate ambient volatile organic compound (VOC) levels at multiple sampling sites in an industrial city, Fuji, Japan. We determined the spatial distributions of 27 species of VOCs in three campaigns: Mar (cold season), May (warm season), and Nov (mild season) of 2004. In all campaigns, toluene (geometric mean concentration, 14.0microg/m3) was the most abundant VOC, followed by acetaldehyde (4.76microg/m3), and formaldehyde (2.58microg/m3). The spatial distributions for certain VOCs showed characteristic patterns: high concentrations of benzene and formaldehyde were typically found along major roads, whereas high concentrations of toluene and tetrachloroethylene (PCE) were usually found near factories. The spatial distribution of PCE observed was extremely consistent with the diffusion pattern calculated from Pollutant Release and Transfer Register data and meteorological data, indicated that passive air samplers are useful for determining the sources and distributions of ambient VOCs.  相似文献   
3.
Ohura T  Amagai T  Makino M 《Chemosphere》2008,70(11):2110-2117
The photochemical degradation of 11 chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and the corresponding 5 parent PAHs was examined to simulate the compound’s fate on aerosol surfaces. All the ClPAHs and PAHs decayed according to the first-order reaction rate kinetics. The photolysis rates of ClPAHs varied greatly according to the skeleton of PAHs; the rates of chlorophenanthrenes (ClPhes) and 1-chloropyrene were higher than those of corresponding parent PAHs, whereas chlorofluoranthenes, 7-chlorobenz[a]anthracene and 6-chlorobenzo[a]pyrene were more stable under irradiation compared to respective parent PAH. Considering the photoproducts of ClPhes detected, the oxidation could occur immediately at positions of the highest frontier electron density. Finally, the quantitative structure-property relationship models were developed for direct photolysis half-lives and average quantum yields of the ClPAHs and parent PAHs, in which the significant factors affecting photolysis were ELUMO+1, total energy and surface area, and ELUMO, ELUMO − EHOMO and total energy, respectively.  相似文献   
4.
Environmental Science and Pollution Research - Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) with three to five aromatic rings have been documented to ubiquitously occur in environmental...  相似文献   
5.
We conducted a comparative study on the indoor air quality for Japan and China to investigate aromatic volatile organic compounds (VOCs) in indoor microenvironments (living room, bedroom, and kitchen) and outdoors in summer and winter during 2006–2007. Samples were taken from Shizuoka in Japan and Hangzhou in China, which are urban cities with similar latitudes. Throughout the samplings, the indoor and outdoor concentrations of many of the targeted VOCs (benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes) in China were significantly higher than those in Japan. The indoor concentrations of VOCs in Japan were somewhat consistent with those outdoors, whereas those in China tended to be higher than those outdoors. Here, we investigated the differences in VOC concentrations between Japan and China. Compositional analysis of indoor and outdoor VOCs showed bilateral differences; the contribution of benzene in China was remarkably higher than that in Japan. Significant correlations (p < 0.05) for benzene were observed among the concentrations in indoor microenvironments and between the outdoors and living rooms or kitchens in Japan. In China, however, significant correlations were observed only between living rooms and bedrooms. These findings suggest differences in strengths of indoor VOC emissions between Japan and China. The source characterizations were also investigated using principal component analysis/absolute principal component scores. It was found that outdoor sources including vehicle emission and industrial sources, and human activity could be significant sources of indoor VOC pollution in Japan and China respectively. In addition, the lifetime cancer risks estimated from unit risks and geometric mean indoor concentrations of carcinogenic VOCs were 2.3 × 10?5 in Japan and 21 × 10?5 in China, indicating that the exposure risks in China were approximately 10 times higher than those in Japan.  相似文献   
6.
Fujima S  Ohura T  Amagai T 《Chemosphere》2006,65(11):1983-1989
An analytical method for the determination of gaseous and particulate chlorinated polycyclic aromatic hydrocarbons (ClPAHs) was investigated. By means of this method, concentrations and isomer profiles of the 27 target ClPAHs could be analyzed. To evaluate the usefulness of the method for analyzing ClPAH emissions, laboratory-scale scorching tests were performed on polyvinylidene chloride (PVDC) plastic wrap over a flame of the gas burner. Only seven of the target ClPAHs were detected, and all compounds detected had 2, 3, or 4 rings. The detected ClPAHs were present in both the particulate phase and the gaseous phase, but they were present at higher concentrations in the gaseous phase than in the particulate phase. Relationships between the number of chlorine substituents on the naphthalene/phenanthrene rings and the overall concentration and the percentage in the particulate phase were also investigated.  相似文献   
7.
Hydroxylated polycyclic aromatic hydrocarbons (OH-PAH) with less than four rings are frequently found in the environment, whereas the toxicities associated with these compounds remain unclear. In this study, aryl hydrocarbon receptor (AhR)–ligand binding activities of OH-PAH were investigated by using a recombinant yeast assay system. The majority of the OH-PAH tested showed AhR–ligand binding activities, especially, when the hydroxylated derivatives of naphthalene were incubated with recombinant yeast. The structure–activity relationship between AhR activity and molecular weight or the octanol–water partition coefficient value of OH-PAH displayed significant correlations. These findings indicate that the site and number of hydroxy-groups substituted on PAH skeleton apparently influenced the AhR – ligand binding activity in the recombinant yeast assay.  相似文献   
8.
建立了固相萃取(SPE)/气相色谱质谱(GC/MS)联用检测灰尘中氯代多环芳烃(ClPAHs)的方法.以正己烷和二氯甲烷混合液为提取溶剂,索氏提取灰尘样品中的20种ClPAHs,活性硅胶层析柱与活性炭混合硅胶SPE柱协同净化.净化后的提取液采用GC/MS测定,SIM模式扫描,并用质谱特征离子定量分析.结果表明,填充量为0.2 g(W(活性炭)∶W(硅胶)=1∶40)的活性炭混合硅胶SPE小柱能有效地将ClPAHs分离出来,载样后采用反向溶剂洗脱,既提高了回收率又减少了洗脱剂甲苯的用量,净化效果好.处理灰尘样品后检测分析,20种ClPAHs的平均回收率稳定在60.4%—120.1%,相关系数>0.99,检出限为0.04—0.17 ng.g-1,相对标准偏差为1.6%—10.2%.本方法前处理简单,定性、定量准确可靠,可广泛应用于环境介质中氯代多环芳烃的检测.  相似文献   
9.
Zirconium was loaded onto orange waste, a cheap and available agricultural waste in Japan, to investigate the feasibility of its utilization for phosphorus recovery from secondary effluent and side-stream liquid, which contain 5.9 and 68.2 mg/dm3 phosphorus, respectively. The phosphorus removal from side-stream liquid by using zirconium-loaded saponified orange waste (Zr-SOW) gel increased with an increasing solid/liquid ratio, and it was found that Zr-SOW gel showed better performance than zirconium ferrite. The prepared adsorbent was effective for phosphorus removal and exhibited a reasonably high adsorption capacity, twice than that of zirconium ferrite. The secondary effluent was treated in a column packed with Zr-SOW gel, and an dynamic adsorption capacity of 1.3 mol-P/kg was attained. The adsorbed phosphorus from the column was successfully eluted as a concentrated form by using a small amount of 0.2 M NaOH. Throughout the elution process, zirconium was not leaked from the adsorption gel.  相似文献   
10.
Comparative studies on polycyclic aromatic hydrocarbon (PAH) pollution in residential air of Hangzhou (China) and Shizuoka (Japan) were conducted in summer (August, 2006) and winter (January, 2007). Total concentrations of 8 PAHs ranged from 7.1 to 320 ng/m3 and 0.15 to 35 ng/m3 in residential air of Hangzhou and Shizuoka, respectively. Air PAH concentrations in smoking houses were higher than that in nonsmoking houses. In nonsmoking houses, mothball emission and cooking practice were the emission sources of 2- and 3-ring PAHs in Hangzhou, respectively. The 2- and 3-ring PAHs were from use of insect repellent, kerosene heating and outdoor environment in nonsmoking houses in Shizuoka. The 5- and 6-ring PAHs in residential air were mainly from outdoor environment in both cities. Toxicity potencies of PAHs in residential air of Hangzhou were much higher than that in Shizuoka.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号