首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   4篇
污染及防治   3篇
评价与监测   1篇
  2017年   1篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1982年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N2 (N2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5 m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected in ground water dating back to the time these compounds were introduced.  相似文献   
2.
The U.S. Army Corps of Engineers (US ACE) used the Triad approach to expedite site characterization of contaminated soil at the Former Small Arms Evergreen Infiltration Training Range in Fort Lewis, Washington. The characterization was designed to determine if surface soils contain significant concentrations of metals, with the focus on collecting sufficient data for determining appropriate future actions (i.e., risk analysis or soil remediation). A dynamic sampling and analytical strategy based on rapid field‐based analytical methods was created in order to streamline site activities and save resources while increasing confidence in remediation decisions. Concurrent analysis of soil samples during the demonstration of method applicability (DMA) used both field portable X‐ray fluorescence (FPXRF) and laboratory methodologies to establish a correlation between FPXRF and laboratory data. Immediately following the DMA, contaminated soil from the impact berm was delineated by collecting both FPXRF data and fixed laboratory confirmation samples. The combined data set provided analytical results that allowed for revisions to the conceptual site model for the range and directed additional sample collection activities to more clearly determine the extent and distribution of soil contamination. © 2004 Wiley Periodicals, Inc.  相似文献   
3.
Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data were used to determine the processes controlling transport and fate of NO(3)(-) in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m(-1) in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO(3)(-) concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO(3)(-) was transported into the stream. At two of the five study sites, NO(3)(-) in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO(3)(-) would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO(3)(-) loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds.  相似文献   
4.
The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N(2) from denitrification increases with age. Stable isotopes and excess N(2) imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 micromol N L(-1)d(-1), comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination.  相似文献   
5.
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO(-)(3) in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water.  相似文献   
6.
The Salinas River watershed along the central coast of California, U.S.A., supports rapidly growing urban areas and intensive agricultural operations. The river drains to an estuarine National Wildlife Refuge and a National Marine Sanctuary. The occurrence, spatial patterns, sources and causesof aquatic toxicity in the watershed were investigated by sampling four sites in the main river and four sites in representative tributaries during 15 surveys between September1998 and January 2000. In 96 hr toxicity tests, significant Ceriodaphnia dubia mortality was observed in 11% of the mainriver samples, 87% of the samples from a channel draining anurban/agricultural watershed, 13% of the samples fromchannels conveying agricultural tile drain runoff, and in 100% of the samples from a channel conveying agricultural surface furrow runoff. In six of nine toxicity identificationevaluations (TIEs), the organophosphate pesticides diazinon and/or chlorpyrifos were implicated as causes of observed toxicity, and these compounds were the most probable causes oftoxicity in two of the other three TIEs. Every sample collectedin the watershed that exhibited greater than 50% C. dubia mortality (n = 31) had sufficient diazinon and/or chlorpyrifos concentrations to account for the observed effects.Results are interpreted with respect to potential effects on other ecologically important species.  相似文献   
7.

In vivo laboratory studies of toxicity were performed on Wistar rats using a methanol extract produced by the natural population of Cylindrospermopsis raciborskii (abundance of 2.13 × 105 trichomes mL−1) collected at Aleksandrovac Lake (Serbia). HPLC analysis showed that the extract contains 6.65 μg cylindrospermopsin (CYN) mg−1. The rats were killed 24 or 72 h after a single intraperitoneal injection of C. raciborskii extract in concentrations of 1500, 3000, 6000 and 12,000 μg kg−1 body weight (bw) and an equivalent amount of CYN as present in the highest dose of the extract (79.80 μg CYN kg−1 bw). The genotoxic effect on the livers treated with C. raciborskii was evaluated using comet assay and potential induction of oxidative stress as the toxicity mechanism associated with the presence of CYN in extract. The results from the analyses of DNA damage in the comet tail length, tail moment and percentage of DNA in the tail in the liver indicated that administration of extract and CYN present statistically significant difference when compared with the negative control group. Although an increase in the frequency of selected parameters induced by the CYN was observed in the liver, this damage was less than the damage resulting from the administration of the highest dose of extract. The changes in the biochemical parameters of the hepatic damage showed that the application of single doses of the extract and CYN did not cause serious liver damage in rats. The extract and CYN significantly increased oxidative stress in rats’ liver after a single exposure.

  相似文献   
8.
AJ Dobbs  LJ Tavener 《Chemosphere》1982,11(4):465-470
The activity of a chemical in solution determines its tendency to move into other media. At low concentrations (<0.01M) it is generally considered to be linearly related to concentration. A hypothetical model based on the structure of liquid water is discussed which could cause deviations from this linearity in the ppb region, a concentration much lower than that normally investigated thermodynamically, but one of great importance environmentally. Headspace experiments are reported with carbon tetrachloride and chloroform in water at concentrations down to ~10?3 ppb but no such deviations were discerned.  相似文献   
9.
在分析500kV变电站主变压器消防系统的现状,比较3类消防系统优缺点的基础上,详细论述了主变排油注氮装置的结构组成、工作原理、参数计算、控制系统设计以及需要注意的事项等,为下一步排油注氮装置的推广应用打下基础.  相似文献   
10.
A combination of ground water modeling, chemical and dissolved gas analyses, and chlorofluorocarbon age dating of water was used to determine the relation between changes in agricultural practices, and NO3- concentrations in ground water of a glacial outwash aquifer in west-central Minnesota. The results revealed a redox zonation throughout the saturated zone with oxygen reduction occurring near the water table, NO3- reduction immediately below it, and then a large zone of ferric iron reduction, with a small area of sulfate (SO4(2-)) reduction and methanogenesis (CH4) near the end of the transsect. Analytical and NETPATH modeling results supported the hypothesis that organic carbon served as the electron donor for the redox reactions. Denitrification rates were quite small, 0.005 to 0.047 mmol NO3- yr(-1), and were limited by the small amounts of organic carbon, 0.01 to 1.45%. In spite of the organic carbon limitation, denitrification was virtually complete because residence time is sufficient to allow even slow processes to reach completion. Ground water sample ages showed that maximum residence times were on the order of 50 to 70 yr. Reconstructed NO3- concentrations, estimated from measured NO3- and dissolved N gas showed that NO3- concentrations have been increasing in the aquifer since the 1940s, and have been above the 714 micromol L(-1) maximum contaminant level at most sites since the mid- to late-1960s. This increase in NO3- has been accompanied by a corresponding increase in agricultural use of fertilizer, identified as the major source of NO3- to the aquifer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号