首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   2篇
综合类   1篇
污染及防治   4篇
  2021年   2篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Local emissions of Arctic air pollutants and their impacts on climate, ecosystems and health are poorly understood. Future increases due to Arctic warming or economic drivers may put additional pressures on the fragile Arctic environment already affected by mid-latitude air pollution. Aircraft data were collected, for the first time, downwind of shipping and petroleum extraction facilities in the European Arctic. Data analysis reveals discrepancies compared to commonly used emission inventories, highlighting missing emissions (e.g. drilling rigs) and the intermittent nature of certain emissions (e.g. flaring, shipping). Present-day shipping/petroleum extraction emissions already appear to be impacting pollutant (ozone, aerosols) levels along the Norwegian coast and are estimated to cool and warm the Arctic climate, respectively. Future increases in shipping may lead to short-term (long-term) warming (cooling) due to reduced sulphur (CO2) emissions, and be detrimental to regional air quality (ozone). Further quantification of local Arctic emission impacts is needed.  相似文献   
2.
Environmental Science and Pollution Research - The degradation of nitroaromatics/toxic energetic compounds contaminated water is a major cause of concern. W-doped TiO2 nanoparticles (NPs) were...  相似文献   
3.
Radionuclide migration in aquatic environment is influenced by its sorption onto colloids/mineral oxides and the presence of organic complexing anions. With a view to understand the sorption of trivalent actinides by mineral oxides in presence of organic acid, in the present study, Eu(III), malonic acid (MA) and γ-alumina are considered as representatives of trivalent actinides, low molecular weight natural occurring organic acid and aluminol sites, respectively. The influence of MA on sorption of Eu(III) by γ-alumina was elucidated by batch sorption, spectroscopic techniques and surface complexation modeling, for the first time. Attenuated Total Reflection-Fourier Transform Infrared spectroscopic studies of MA sorbed on γ-alumina revealed the presence of two inner-sphere surface complexes. Batch sorption for binary (alumina-Eu(III)) and ternary (alumina-Eu(III)-MA) systems were investigated as a function of pH, Eu(III) concentration and sequential addition of Eu(III)/MA. The pH edge for Eu(III) sorption shifts to higher pH with increasing Eu(III) concentration. In ternary systems, Eu(III) sorption is significantly enhanced at pH < 4.5. Eu(III) speciation on γ-alumina is independent of addition sequence of Eu(III)/MA. Time resolved fluorescence spectroscopy of Eu(III) sorbed on γ-alumina exhibited two surface species, XOEu2+ and (YO)2Eu+. The enhancement in I616/I592 and lifetime for ternary systems, as compared to binary system, at low pH, indicates the participation of Eu-MA complexes in the formation of surface species in ternary systems. The diffuse layer model has been employed to successfully model the experimental sorption profiles of binary and ternary systems, using code FITEQL 4.0, by considering the surface species identified by spectroscopic techniques.  相似文献   
4.
5.
The ability of fungal strains to attack a composite material obtained from poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) is investigated. The fungal strain tested was Aspergillus niger. This fungal strain was able to change not only the polymer surface from smoother to rougher, but also to disrupt the polymer. The degradation results were confirmed by visual observations, scanning electron microscopy (SEM) analyses, X-ray diffraction analyses and FTIR spectra of the film samples. SEM micrographs confirmed the growth of fungi on the composite film surface. The degree of microbial degradation depends on culture medium and on composition of polymeric materials, especially on PVA content. The biodegradation process is accelerated by the presence of glucose in the culture medium as an easily available carbon source.  相似文献   
6.
Measurements carried out in Paris Magenta railway station in April–May 2006 underlined a repeatable diurnal cycle of aerosol concentrations and optical properties. The average daytime PM10 and PM2.5 concentrations in such a confined space were approximately 5–30 times higher than those measured in Paris streets. Particles are mainly constituted of dust, with high concentrations of iron and other metals, but are also composed of black and organic carbon. Aerosol levels are linked to the rate at which rain and people pass through the station. Concentrations are also influenced by ambient air from the nearby streets through tunnel ventilation. During daytime approximately 70% of aerosol mass concentrations are governed by coarse absorbing particles with a low Angström exponent (~0.8) and a low single-scattering albedo (~0.7). The corresponding aerosol density is about 2 g cm?3 and their complex refractive index at 355 nm is close to 1.56–0.035 i. The high absorption properties are linked to the significant proportion of iron oxides together with black carbon in braking systems. During the night, particles are mostly submicronic, thus presenting a greater Angström exponent (~2). The aerosol density is lower (1.8 g cm?3) and their complex refractive index presents a lower imaginary part (1.58–0.013 i), associated to a stronger single-scattering albedo (~0.85–0.90), mostly influenced by the ambient air. For the first time we have assessed the emission (deposition) rates in an underground station for PM10, PM2.5 and black carbon concentrations to be 3314 ± 781(?1164 ± 160), 1186 ± 358(?401 ± 66) and 167 ± 46(?25 ± 9) μg m?2 h?1, respectively.  相似文献   
7.
The aim of this work was to select a fungal strain with degradative potential upon PVA based materials. The polymeric materials tested were PVA films which contain different percentages of PVA, starch and glycerol. These materials are of interest for food packaging applications, which presume to solve the problems concerning accumulation, disposal and degradation. Eleven strains were tested in solid culture for the ability to use PVA based composites as carbon and energy sources. The fungal strain selected was cultivated in liquid medium with different compositions. The scanning electron microscopy (SEM) investigations revealed the effects of microorganism growth upon polymeric films. Significant changes in polymer surface aspects were observed depending on the medium culture composition, the presence of supplementary carbon source facilitating microbial growth and degradation process.  相似文献   
8.
For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM2.5 and PM10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 105 μg m?2) or no traffic conditions (3.73 × 105 μg m?2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号