首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
污染及防治   1篇
评价与监测   5篇
  2023年   1篇
  2022年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
The study was carried out to understand the variability in phytoplankton production (Chlorophyll a) and mesozooplankton diversity from two different shallow coastal regions of south Andaman viz. Port Blair Bay (PBB), the only real urban area among the islands and Mahatma Gandhi Marine National Park, a Marine Protected Area (MPA) at Wandoor. Seasonal sampling was carried out during the Northeast monsoon (NEM—November 2005), Intermonsoon (IM—April 2006), and Southwest monsoon (SWM—August 2006). Significant (P?<?0.05) seasonal variation was observed in the environmental variables at both the regions. Higher average chlorophyll a (Chl. a) and mesozooplankton standing stock were observed at PBB compared to MPA, but the seasonal variation observed was marginal at both the study areas. Chl. a showed a steep increasing gradient from outer to the inner regions of the PBB. The number of zooplankton taxa recorded at both areas was quite similar, but marked differences were noticed in their relative contribution to the total abundance. Eventhough the Copepoda dominated at both the areas, the non-copepod taxa differed significantly between the regions. Dominance of carnivores such as siphonophores and chaetognaths were noticed at PBB, while filter feeders such as appendicularians and decapod larvae were more abundant at MPA. A total of 20 and 21 copepod families was recorded from PBB and MPA, respectively. Eleven species of chaetognaths were observed as common at both areas. Larval decapods were found to be predominant at MPA with 20 families; whereas, at PBB, only 12 families were recorded. In the light of the recent reports on various changes occurring in the coastal waters of the Andaman Islands, it is suspected that the difference in Chl. a as well as the mesozooplankton standing stock and community structure observed between the two study areas may be related to the various anthropogenic events influencing the coastal waters.  相似文献   
2.
Phytoplankton studies in early 1970s have shown the annual dominance of diatoms and a seasonal abundance of Trichodesmium in the lower reaches of the Cochin backwaters (CBW) and adjacent coastal Arabian Sea during the pre-summer monsoon period (February to May). Surprisingly, more recent literature shows a complete absence of Trichodesmium in the CBW after 1975 even though their seasonal occurrence in the adjacent coastal Arabian Sea continued without much change. In order to understand this important ecological feature, we analyzed the long-term water quality data (1965–2005) from the lower reaches of the CBW. The analyses have shown that salinity did not undergo any major change in the lower reaches over the years and values remained >30 throughout the period. In contrast, a tremendous increase was well marked in levels of nitrate (NO3) and phosphate (PO4) in the CBW after 1975 (av. 15 and 3.5 μM, respectively) compared with the period before (av. 2 and 0.9 μM, respectively). Monthly time series data collected in 2004–2005 period from the lower reaches of the CBW and coastal Arabian Sea have clearly shown that the physical characteristics like salinity, temperature, water column stability, and transparency in both regions are very similar during the pre-summer monsoon period. In contrast, the nutrient level in the CBW is several folds higher (NO3, 8; PO4, 4; SiO4, 10; and NH4, 19 μM) than the adjacent coastal Arabian Sea (NO3, 0.7; PO4, 0.5; SiO4, 0.9; and NH4, 0.6 μM). The historic and fresh time series data evidences a close coupling between enriched levels of nutrients and the absence of Trichodesmium in the Cochin backwaters  相似文献   
3.
The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers.  相似文献   
4.
Water quality in the Cochin Estuary, southwest coast of India during the tsunami attack was assessed and compared with the pre and post tsunami characteristics. From the results obtained, it is evident that a drastic change in hydrography has been inflicted by the energy transferred through the tsunami, which disturbed the entire estuarine embayment. However, the post tsunami water quality showed normal levels indicating that the region has recovered from the tsunami impacts.  相似文献   
5.

Cochin estuary (CE) is one of the largest tropical estuaries along the southwest coast of India, sustaining rich bio-resources. Several studies enlighten the environmental changes in the CE caused by anthropogenic activities. In the present study, an attempt has been made to quantify the heavy metal (dissolved and particulate) fluxes brought by the six rivers into the CE with their exchange into the coastal ocean through the major inlet at Cochin during a steady flow period (October–November 2015). The water flux across the inlet was quantified using an acoustic doppler current profiler. The measured daily input of dissolved metals from the rivers was 2.43?×?103 kg Fe, 334 kg Zn, 259 kg Ni, and 83 kg Cr, while that of particulate metals were 85.30?×?103 kg Fe, 8. 6?×?103 kg Mn, 236.9 kg Cr, and 111.9 kg Zn. The net export of metals through the Cochin inlet (per tidal cycle) was 3.3?×?103 kg Fe, 515 kg Cr, 150 kg Zn, and 5 kg Ni in dissolved form and 3.32?×?105 kg Fe, 1747 kg Mn, 1636 kg Cr, 1397 kg Zn, and 586 kg Ni in particulate form. The high concentrations of metals during ebb tides are clear indications of their contribution from the industrial conglomerates (industrial units of metallurgy, catalyst, fertilizer, and pesticides) located in the Periyar River. The significance of this study is that the export fluxes may increase further during the summer monsoon (June to September), which may impact the abundant fishery emanating in the coastal environment during the period due to intense upwelling.

  相似文献   
6.
Environmental Modeling & Assessment - The Thanneermukkom Bund was constructed to prevent salt water intrusion in the low lying areas of the Kuttanad region which increase the paddy cultivation...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号