首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   3篇
污染及防治   1篇
  2020年   1篇
  2009年   3篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China).The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system.Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities.A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and volume. The latter data were subsequently used as parameters for the routing optimization of collection trucks and material density evaluation.  相似文献   
2.
The increase in population, the rapid economic growth and the rise in community living standards accelerate municipal solid waste (MSW) generation in developing cities. This problem is especially serious in Pudong New Area, Shanghai, China. The daily amount of MSW generated in Pudong was about 1.11 kg per person in 2006. According to the current population growth trend, the solid waste quantity generated will continue to increase with the city's development. In this paper, we describe a waste generation and composition analysis and provide a comprehensive review of municipal solid waste management (MSWM) in Pudong. Some of the important aspects of waste management, such as the current status of waste collection, transport and disposal in Pudong, will be illustrated. Also, the current situation will be evaluated, and its problems will be identified.  相似文献   
3.
The concurrent effects of a fast national growth rate, of a large and dense residential area and a pressing demand for urban environmental protection create a challenging framework for waste management in Pudong New Area, Shanghai. The complexity of context and procedures is indeed a primary concern of local municipal authorities due to problems related to the collection, transportation and processing of residential solid waste. In order to design and implement a suitable urban solid waste system, the first task is to forecast the quantity and variance of solid waste as it relates to residential population, consumer index, season, etc. The system here discussed addresses exactly these issues, by means of an intelligent, sensorized container. The container has been prepared and tested in the Pudong New Area, Shanghai.  相似文献   
4.
Environmental Science and Pollution Research - The European Interreg Italy–France 2014–2020 Maritime Project SPlasH! (Stop to Plastics in H2O!) focused on the study of microplastics...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号