首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   2篇
评价与监测   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 281 毫秒
1
1.
Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PCn, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg−1 dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PCn, and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg −1 EDTA, vetiver accumulated 4460 and 480 mg Pb kg−1 dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC1) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC1-Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass.  相似文献   
2.
Prediction models for exchangeable soil lead, published earlier in this journal (Andra et al. 2010a), were developed using a suite of native lead (Pb) paint-contaminated residential soils from two US cities heavily populated with homes constructed prior to Pb ban in paints. In this study, we tested the feasibility and practical applications of these prediction models for developing a phytoremediation design using vetiver grass (Vetiveria zizanioides), a Pb-tolerant plant. The models were used to estimate the exchangeable fraction of Pb available for vetiver uptake in four lead-spiked soil types, both acidic and alkaline, with varying physico-chemical properties and that are different from those used to build the prediction models. Results indicate a strong correlation for predictable exchangeable Pb with the observed fraction and as well with total Pb accumulated by vetiver grass grown in these soils. The correlation coefficient for the predicted vs. observed exchangeable Pb with p < 0.001 was 0.999, 0.996, 0.949, and 0.998 in the Immokalee, Millhopper, Pahokee Muck, and Tobosa soil type, respectively. Similarly, the correlation coefficient for the predicted exchangeable Pb vs. accumulated Pb in vetiver grass with p?< 0.001 was 0.948, 0.983, 0.929, and 0.969 for each soil type, respectively. This study suggests that the success of a phytoremediation design could be assessed upfront by predicting the exchangeable Pb fraction in a given soil type based on its properties. This helps in modifying the soil conditions to enhance phytoextraction of Pb from contaminated soils.  相似文献   
3.
Lead (Pb)-based paints pose a serious health problem to people living in residential settings constructed prior to 1978. Children are at a greater risk to Pb exposure resulting from hand-to-mouth activity in Pb-contaminated residential soils. For soil Pb, the most environmentally friendly, potentially cheap, and visually unobtrusive in situ technology is phytoremediation. However, the limiting factor in a successful phytoremediation strategy is the availability of Pb for plant uptake. The purpose of this study was to establish a relationship between soil properties and the plant-available/exchangeable Pb fraction in the selected Pb-based paint-contaminated residential sites. We selected 20 such sites from two different locations (San Antonio, Texas and Baltimore, Maryland) with varying soil properties and total soil Pb concentrations ranging between 256 and 4,182 mg kg?1. Despite higher Pb levels in these soils that exceeds US EPA permissible limit of 400 mg kg???1, it is known that the plant-available Pb pools are significantly lower because of their sorption to soil components such as organic matter, Fe?CMn oxides, and clays, and their precipitation in the form of carbonates, hydroxides, and phosphates. Principal component analysis and hierarchical clustering showed that the potentially plant-available Pb fraction is controlled by soil pH in the case of acidic Baltimore soils, while soil organic matter plays a major role in alkaline San Antonio soils. Statistical models developed suggest that Pb is likely to be more available for plant uptake in Baltimore soils and a chelant-assisted phytoextraction strategy will be potentially necessary for San Antonio soils in mobilizing Pb from complexed pool to the plant-available pool. A thorough knowledge of site-specific factors is therefore essential in developing a suitable and successful phytoremediation model.  相似文献   
4.
Chelant-aided enhancement of lead mobilization in residential soils   总被引:3,自引:0,他引:3  
Chelation of metals is an important factor in enhancing solubility and hence, availability to plants to promote phytoremediation. We compared the effects of two chelants, namely, ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) in enhancing mobilized lead (Pb) in Pb-based paint contaminated residential soils collected from San Antonio, Texas and Baltimore, Maryland. Batch incubation studies were performed to investigate the effectiveness of the two chelants in enhancing mobilized Pb, at various concentrations and treatment durations. Over a period of 1 month, the mobilized Pb pool in the San Antonio study soils increased from 52 mg kg−1 to 287 and 114 mg kg−1 in the presence of 15 mM kg−1 EDTA and EDDS, respectively. Stepwise linear regression analysis demonstrated that pH and organic matter content significantly affected the mobilized Pb fraction. The regression models explained a large percentage, from 83 to 99%, of the total variation in mobilized Pb concentrations.  相似文献   
5.
ABSTRACT

The main purpose of Green Supply Chain Management (GSCM) is to improve the quality of supply chain management strategies and environmental performance. As per current statistics, the chemical industry is growing fast in Bangladesh. In order to compete for global competition, GSCM is essential in this sector. This paper proposes a systematic approach of structural framework whose aim is to enhance the probability of constructive implementation of GSCM in the field chemical industry in Bangladesh. Therefore, this framework evaluates the appropriate interrelationship along with the drivers of GSCM in the chemical industry. In total, eight drivers were finalized from an associated literature review with the help of survey and by taking expert opinions via the Delphi methodology. In addition to MICMAC analysis, the driving and the dependence powers for all the drivers were determined. Moreover, the structural frameworks for the drivers were developed by means of total interpretive structural modeling (TISM) technique. As a result, the findings indicate that the most significant driver was supplier pressure and willingness and the most important barrier was high cost. Finally, the main objective of this research is expected to help industrial managers to evaluate and understand the critical areas where they should emphasize to implement GSCM in the chemical industry.  相似文献   
6.
Increasing phosphorus (P) content and decreasing water quality of Saint-Augustin Lake, Quebec City, Canada, has led to implementation of an Integrated Watershed Management Plan to restore the lake. As a part of the plan, the effects of different restoration techniques on lake water quality and biological community (i.e., biological compatibility) were assessed during an isolated water enclosure study and laboratory microcosm assay, respectively. The restoration techniques include: (i) coagulation of P by alum only (20 mg L−1), (ii) active capping of sediments using a calcite layer of 10 cm, and (iii) a complete method involving both alum coagulation and calcite capping. The results showed that the total P (TP) was greatly decreased (76–95 %) by alum + calcite, followed by calcite only (59–84 %). Secchi depth was 106 % greater and chlorophyll a concentrations were declined by 19–78 % in the enclosure which received both alum and calcite. Results of the biological compatibility test showed that total phytoplankton biomass declined by 31 % in microcosms composed of alum + calcite. No significant (P > 0.05) toxic effect was found on the survival of Daphnia magna and Hyalella azteca in both alum only and alum + calcite microcosms. Although the alum + calcite technique impaired the survival of Chironomus riparius, the midge emergence was much higher compared to alum only and control. Overall, the alum + calcite application was effective in controlling P release from sediment and lowering water column P concentrations, and thus improving the water quality and aquatic life of Saint-Augustin Lake. However, the TP concentrations are still higher than the critical limit (20 μg L−1) for aquatic life and the water column remained in the eutrophic state even after treatment. Increased TP concentrations, to higher than ambient levels of the lake, in the water column of all four enclosures, due to bioturbation artefact triggered by the platform installation, likely cause insufficient dosages of alum and/or calcite applied and reduced their effectiveness.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号