首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
废物处理   1篇
环保管理   1篇
综合类   2篇
基础理论   2篇
污染及防治   4篇
评价与监测   5篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Drinking of arsenic (As)-contaminated groundwater has adverse effects on health of millions of people worldwide. This study aimed to determine the degree of severity of As exposure from drinking water in peri-urban Moyna and Ardebok villages, West Bengal, India. Arsenic concentrations in hair, nail and urine samp les of the individuals were determined. Arsenical dermatosis, keratosis and melanosis were investigated through medical evaluation. We have evaluated the association between As exposure from drinking water, and keratosis and melanosis outcomes. The results showed that 82.7?% of the sampled tube wells contain As concentrations above 10?μg/L, while 57.7?% contain As concentrations above 50?μg/L. The hair, nail and urine As concentrations were positively correlated with As concentrations in drinking water. In our study population, we observed a strong association between As concentrations ranging 51-99?μg/L and keratosis and melanosis outcomes, although the probability decreases at higher concentration ranges perhaps due to switching away from the use of As-contaminated tube wells for drinking and cooking purposes. High As concentrations in hair, nail and urine were observed to be associated with the age of the study population. The level of As concentrations in hair, nail and urine samples of the study population indicated the degree of severity of As exposure in the study region.  相似文献   
2.
Temporal variations of the ambient mixing ratio of greenhouse gas (CH(4) and N(2)O) in a riparian rice-based agro-ecosystem of tropical region were studied during 2005-2006 in coastal Odisha. The endeavour was made with the hypothesis that the ambient mixing ratio of CH(4) and N(2)O depends on the changes in the flux of CH(4) and N(2)O from the rice fields in the riparian rice ecosystems. A higher ambient mixing ratio of CH(4) was recorded during the tillering to grain filling stages of the rice crop, during both dry and wet seasons. The higher ambient mixing ratio of CH(4) during the wet season may attribute to the higher CH(4) emission from the rice field. The average mixing ratio of CH(4) was recorded as 1.84 ± 0.05 ppmv and 1.85 ± 0.06 ppmv during 2005 and 2006, respectively. The ambient CH(4) mixing ratio was recorded negatively correlated with the average ambient temperature. The N(2)O mixing ratio ranged from 261.57 to 399.44 ppbv with an average of 330.57 ppbv during 2005. However, the average mixing ratio of N(2)O was recorded as 318.83 ± 20.00 ppbv during 2006. The N(2)O mixing ratio was recorded to be negatively correlated with rainfall and average ambient temperature. Significant negative correlation (r = -0.209) of N(2)O with sunshine hours may attribute to the photochemical break down of N(2)O. The temporal variation of N(2)O flux from the rice field does not affect the ambient mixing ratio of N(2)O in the same way as in the case of the ambient mixing ratio of CH(4). However, the higher mixing ratio of N(2)O during the fallow period of the post monsoon period may attribute to the N(2)O flux from soil. Results indicate that intensively cultivated coastal ecosystems can be a major source of ambient greenhouse gas.  相似文献   
3.
A study was conducted in fluoride-affected Bankura and Purulia districts of West Bengal to assess the potential health risk from fluoride exposure among children, teenagers, and adults due to consumption of rice, pulses, and vegetables in addition to drinking water and incidental ingestion of soil by children. Higher mean fluoride contents (13–63 mg/kg dry weight) were observed in radish, carrot, onion bulb, brinjal, potato tuber, cauliflower, cabbage, coriander, and pigeon pea. The combined influence of rice, pulses, and vegetables to cumulative estimated daily intake (EDI) of fluoride for the studied population was found to be 9.5–16%. Results also showed that intake of ivy gourd, broad beans, rice, turnip, fenugreek leaves, mustard, spinach, and amaranth grown in the study area is safe at least for time being. The cumulative EDI values of fluoride (0.06–0.19 mg/kg-day) among different age group of people of the study area were evaluated to be ~104 times higher than those living in the control area; the values for children (0.19 and 0.52 mg/kg-day for CTE and RME scenarios, respectively) were also greater than the “Tolerable Upper Intake Level” value of fluoride. The estimated hazard index (HI) for children (3.2 and 8.7 for CTE and RME scenarios, respectively) living in the two affected districts reveals that they are at high risk of developing dental fluorosis due to the consumption of fluoride-contaminated rice, pulses, and vegetables grown in the study area in addition to the consumption of contaminated drinking water.  相似文献   
4.
5.
This study proposes a practical method to estimate elemental composition and distribution in order to attribute source and quantify impacts of aerosol particles at an urban region in Kolkata, India. Twelve-hour total particulates were collected in winter (2005–2006) and analyzed by energy-dispersive X-ray fluorescence technique to determine multi-elemental composition, especially trace metals. The aerosols consist of various elements including K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, and Pb which exhibit significant concentration at various sites (p?<?0.05). The concentration of different metallic elements were found in the order of Zn ?> ?Pb ?> ?Ni ?> ?Cu ?> ?Cr ?>? Co. Statistical multivariate analysis and correlation matrix analyses were performed for factor identification and consequent source apportionment. Contour profiles demonstrate spatial variation of elemental compositions indicating possible source contribution along with meteorological influences. Spatial differences were clearly most significant for Zn, Ni, Pb, and Cu reflecting the importance of anthropogenic inputs, primarily from automobile sources.  相似文献   
6.
Recent market slump in rice, less rainfall during monsoon, high temperature and scarcity of water during dry season leads to lower grain yield and less profit from rice cultivation in India. Farmers’ grow upland crops like chickpea (Cicer arietinum), greengram (Vigna radiate), mustard (Brassica nigra), corn (Zea maize), pigeonpea (Cajanus cajan), potato (Solanum tuberosum), sunflower (Helianthus annuus) etc. along with rice (Oryza sativa) during the dry season. However, knowledge of greenhouse gas (GHG) emission from these rice based cropping systems is very limited. In the present study four rice based cropping systems was studied along with rice-rice rotation system as control in respect of GHG emission, yield potential and economic feasibility. Conventional plantation and fertilizer application methodology was followed for each crop. Methane (CH4) and nitrous oxide (N2O) flux from field plots were studied with conventional closed chamber method using gas chromatograph. CH4 flux was recorded highest from rice-rice rotation plots (304.25 kg ha−1). N2O flux was recorded 1.02 kg ha−1 from rice-rice rotation system during wet season. However, during wet season, higher N2O flux (1.93 kg ha−1) was recorded from rice-potato-sesame rotation plots. Annual N2O flux was also recorded significantly low (3.42 kg ha−1) from rice-rice rotation plots and high (6.19 kg ha−1) from rice-chickpea-greengram rotation plots. Significantly lower annual grain yield was recorded from rice-rice rotation plots (9.25 Mg ha−1) whereas it was 18.84 Mg rice eq ha−1 from rice-potato-sesame rotation system. The global warming potential (GWP) of rice-rice rotation system was recorded significantly high (8.62 Mg CO2 ha−1) compare to plots with different rice based cropping systems. Computing all C-emission from cradle-to-grave, highest total C-cost was recorded from the rice-rice rotation system ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit (1248.21 ha−1) and C-credit ($38.60 ha−1). The result of the study may be limited to the study region; however, the study has potential use in respect to the development of agriculture practice for adaptation to climate change.  相似文献   
7.
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking–cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p?=?0.04) from 26 μg L?1 in summer to 6 μg L?1 in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day ?1) and female (2.6 and 1.2 L day?1) participants from summer to winter. Arsenic intake through drinking water decreased (p?=?0.04) in winter (29 μg day?1) than in summer (100 μg day?1), and urinary arsenic concentration decreased (p?=?0.018) in winter (41 μg L?1) than in summer (69 μg L?1). Dietary arsenic intake remained unchanged (p?=?0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.  相似文献   
8.
The bioaccumulation of copper, lead, zinc and chromium in the liver, intestine, ovary, muscles and brain in four fishes, Channa punctatus, Tilapia mossambica, Catla catla and Labeo rohita, in a sewage-fed jheel ecosystem was analysed. All the heavy metals have been found to accumulate in the four fishes when they are reliant on a sewage-fed ecosystem, in contrast to their freshwater control fish population. The relative accumulation rate of the heavy metals has been found in the order liver brain intestine muscle ovary bone. Of course, the accumulation rate varies from one metal to another in the different fishes. The effect of the bioaccumulation in the specific tissues provides a better basis for regular monitoring of exposure than whole body analyses.  相似文献   
9.
10.
Urban and peri-urban vegetation is being considered for air pollution abatement. Appropriate plants with efficiency to adsorb and absorb air-pollutants are the prerequisite for green space development. The contributions of surface morphology towards plant’s ability to function as dust particulate adsorber and distribution of trace elements over the leaves are investigated in the present study. Dust interception efficiency was estimated for two roadside plant species named Ficus benghalensis, and Polyalthia longifolia. Leaves of both the plants are capable of capturing dust in the range of 0.12 mg/cm2 to 1.89 mg/cm2 on either of the leaf surfaces. However, variation in dust capturing capacity between the plants was observed. Leaf surface characters such as roughness, length, frequency of trichomes and frequency of stomata played a significant role in capturing re-suspended dust. Frequency (2 to 4 per 0.0004 cm2) and length (152.5 to 92.1 cm) of trichome showed negative co-relation trend, where as frequency and size of stomata showed positive co-relation trend. Elemental analysis by Scanning Electron Microscope attached with Energy Dispersive X-Ray Spectrometer (SEMEDS) indicated the presence of elements such as Sodium (Na), Magnesium (Mg), Aluminium (Al), Silicon (Si), Chlorine (Cl), Pottasium (K), Calcium (Ca), Iron (Fe), Zinc (Zn) and Arsenic (As). The results support the fact that plant canopies can be used for mitigation and bio-monitoring of air pollution as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号