首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   3篇
综合类   2篇
污染及防治   1篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 843 毫秒
1
1.
This research used knowledge of the indigenous practice of timing nontimber forest product harvest with the full moon to demonstrate that chemicals controlling the decomposition rate of foliage fluctuate with the lunar cycle and may have developed as a result of plant-herbivore interactions. Indigenous knowledge suggests that leaves harvested during the full moon are more durable. Palm leaves harvested during the full moon had higher total C, hemicellulose, complex C and lower Ca concentrations. These chemical changes should make palm leaves less susceptible to herbivory and more durable when harvested during the full moon. This study proposes a mechanism by which plants in the tropics minimize foliage herbivory and influence the decomposition rates of senesced leaves and their durability, especially during the full moon. This research supports the need to use natural life cycles in managing forests and provides a scientific basis for an indigenous community's harvesting practice.  相似文献   
2.
本研究运用满月时收获非木材林产品的当地实践如识,来证明控制叶片分解速率的化学物质随月亮周期而波动,并且这种现象可能已发展为一种植物一食草动物之间的相互关系.当地知识认为,满月期收获的叶片更为耐用.满月期收获的棕榈叶片具有较高的总碳量、半纤维素和碳化合物、而钙的浓度则较低.这些化学上的变化使棕榈叶在满月收获时对食草动物不太敏感且更为耐用.本研究提出了热带植物减少食叶功物食用及影响衰老叶片的分解速度和耐用性(尤其在满月期)的作用机制.本研究认为森林经营中有必要利用天然的生命周期,并为当地人的收获实践提供了科学依据.  相似文献   
3.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   
4.
ABSTRACT: An analysis of hydrograph recessions and rainfall data was performed to estimate the recession constants for two watersheds in the Luquillo mountains of Puerto Rico. To account for seasonal rainfall patterns, the data were grouped into dry and wet seasons. Sets of three Master Recession Curves (MRC) per season for each watershed were developed: one using the Matching Strip Method (MS) and two using variations of the Correlation Method (CM). These variations were the envelope line (CME) and the least squares regression (CMR). Other regression based analytical expressions that consider the streamflow recession as an autore‐gressive or an integrated moving average process were also applied. The regression based methods performed consistently better than the graphical ones and they proved to be faster, easier, and less subjective. The recession constants from these methods were then used to estimate the time it would take the streamflow to reach the critical Q99 flow duration. Based on this study, once the streamflow reaches Q90, water managers have 6 to 12 days warning before streamflow reaches critical levels.  相似文献   
5.
6.
ABSTRACT: Multivariate analyses were used to develop equations that could predict certain water quality (WQ) conditions for unmonitored watersheds in Puerto Rico based on their physical characteristics. Long term WQ data were used to represent the WQ of 15 watersheds in Puerto Rico. A factor analysis (FA) was performed to reduce the number of chemical constituents. Cluster analysis (CA) was used to group watersheds with similar WQ characteristics. Finally, a discriminant analysis (DA) was performed to relate the WQ clusters to different physical parameters and generate predicting equations. The FA identified six factors (77 percent of variation explained): nutrients, dissolved ions, sodium and chloride, silicacious geology, red ox conditions, and discharge. From the FA, specific conductance, sodium, phosphorous, silica, and dissolved oxygen were selected to represent the WQ characteristics in the CA. The CA determined five groups of watersheds (forested, urban polluted, mixed urban/rural, forested plutonic, and limestone) with similar WQ properties. From the five WQ clusters, two categories can be observed: forested and urban watersheds. The DA found that changes in forest cover, percent of limestone, mean annual rainfall, and watershed shape factor were the most important physical features affecting the WQ of watersheds in Puerto Rico.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号