首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   4篇
综合类   4篇
基础理论   1篇
污染及防治   4篇
评价与监测   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
排序方式: 共有11条查询结果,搜索用时 218 毫秒
1.
Environmental Science and Pollution Research - Dissolved air flotation (DAF) is a widely used treatment process in drinking water and wastewater treatment plants despite high energy cost associated...  相似文献   
2.
At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15 days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392 mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.  相似文献   
3.
Environmental Science and Pollution Research - The present study was conducted to evaluate the impact of marble industry effluents on the accumulation of heavy metals in selected tissues of...  相似文献   
4.
Potassium titanate nanostructures were synthesised by hydrothermal treatment of TiO2 (P25) in KOH and H2O2. As-produced powders were characterised by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and nitrogen adsorption-desorption methods. Longitudinally-oriented-wire-like structures with a length up to several micrometres and diameters ranging from 10 to 30 nm were obtained. Larger size fibrous nanowires resulting from the hydrotherrnal treatment showed high affinity in adsorbing crystal violet (CV), which was mainly due to their high surface area. The photocatalytic bleaching of CV solution revealed that the wires are photoactive under ultraviolet light irradiation. Macroporous nanowires are considered as effective adsorbents of CV, capable of photocatalvtic degradation, and they can be easily separated from the solution by settling.  相似文献   
5.
In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities ofMn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/boioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.  相似文献   
6.
Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of yield and AOT40. Cultivar response reflects that QPM performed better than NQPM against elevated O3.  相似文献   
7.
Microcystins (MCYST) are the freshwater cyanobacterial toxins, known to induce hepatocellular carcinoma, necrosis, intrahepatic bleeding, as well as human and livestock mortality. Within hepatocytes, MCYST selectively bind to protein phosphatases 1 and 2A, resulting in severe liver damage. The toxicology of MCYST in mice and rats has been well studied, but little is known regarding genotoxicity in aquatic animals. In this study, the zebrafish, Danio rerio was exposed to crude extract of Microcystis aeruginosa bloom. Liver and heart were examined for MCYST-induced toxicity. Light microscopy at 36?h revealed severe, widespread apoptotic necrosis of the majority of hepatocytes, and cytoskeletal deformation in myocardiocytes. Hepatocytes were dissociated with cell shrinkage and margination of nuclear chromatin. Laddering of genomic DNA from the liver and heart of the exposed fish in an increment of 180–200?bp was consistent with apoptosis. Fluorimetric analysis of DNA unwinding was carried out to determine the DNA strand breakage. After 36?h exposure, the % double-stranded DNA was significantly reduced in hepatocytes and myocardiocytes. In conclusion, the results obtained in this study indicate that, the extract of M. aeruginosa bloom is genotoxic to fish. The DNA damage observed in this study may be attributed to the activation of DNA endonucleases. This model of DNA damage may contribute for identifying novel molecular mechanisms of interest for therapeutic application.  相似文献   
8.
9.
10.
Bacterial strain RV9 recovered from greengram nodules tolerated 2400 μg/mL of hexaconazole and was identified by 16 S rDNA sequence analysis as Bradyrhizobium japonicum(KY940048). Strain RV9 produced IAA(61.6 μg/mL), ACC deaminase(51.7 mg/(protein·hr)), solubilized TCP(105 μg/mL), secreted 337.6 μg/mL EPS, and produced SA(52.2 μg/mL) and 2,3-DHBA(28.3 μg/mL). Exopolysaccharides produced by strain RV9 was quantified and characterized by SEM, AFM, EDX and FTIR. Beyond tolerance limit,hexaconazole caused cellular impairment and reduced the viability of strain RV9 revealed by SEM and CLSM. Hexaconazole distorted the root tips and altered nodule structure leading thereby to reduction in the performance of greengram. Also, the level of antioxidant enzymes, proline, TBARS, ROS and cell death was increased in hexaconazole treated plants.CLSM images revealed a concentration dependent increase in the characteristic green and blue fluorescence of hexaconazole treated roots. The application of B. japonicum strain RV9 alleviated the fungicide toxicity and improved the measured plant characteristics. Also,rhizobial cells were localized inside tissues as revealed by CLSM. Colonization of B.japonicum strain RV9 decreased the levels of CAT, POD, APX, GPX and TBARS by 80%, 5%,13%, 13% and 19%, respectively over plants grown at 80 μg/(hexaconazole·kg) soil. The ability to detoxify hexaconazole, colonize plant tissues, secrete PGP bioactive molecules even under fungicide pressure and its unique ability to diminish oxidative stress make B.japonicum an attractive choice for remediation of fungicide polluted soils and to concurrently enhance greengram production under stressed environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号