首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   1篇
污染及防治   3篇
评价与监测   1篇
  2018年   1篇
  2016年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations (≥1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km × 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution.  相似文献   
2.

Background

This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey.

Results

Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75–100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of <?40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (=?above-average) or low (=?below-average) correlation coefficients.

Conclusions

LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites.
  相似文献   
3.
In this study, the indicative value of mosses as biomonitors of atmospheric nitrogen (N) depositions and air concentrations on the one hand and site-specific and regional factors which explain best the total N concentration in mosses on the other hand were investigated for the first time at a European scale using correlation analyses. The analyses included data from mosses collected from 2781 sites across Europe within the framework of the European moss survey 2005/6, which was coordinated by the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP Vegetation). Modelled atmospheric N deposition and air concentration data were calculated using the Unified EMEP Model of the European Monitoring and Evaluation Programme (EMEP) of the Convention on Long-range Transboundary Air Pollution (CLRTAP). The modelled deposition and concentration data encompass various N compounds. In order to assess the correlations between moss tissue total N concentrations and the chosen predictors, Spearman rank correlation analysis and Classification and Regression Trees (CART) were applied. The Spearman rank correlation analysis showed that the total N concentration in mosses and modelled N depositions and air concentrations are significantly correlated (0.53 ≤ rs ≤ 0.68, p < 0.001). Correlations with other predictors were lower than 0.55. The CART analysis indicated that the variation in the total N concentration in mosses was best explained by the variation in NH4+ concentrations in air, followed by NO2 concentrations in air, sampled moss species and total dry N deposition. The total N concentrations in mosses mirror land use-related atmospheric concentrations and depositions of N across Europe. In addition to already proven associations to measured N deposition on a local scale the study at hand gives a scientific prove on the association of N concentration in mosses and modelled deposition at the European scale.  相似文献   
4.
Winfried Schröder  Stefan Nickel  Simon Schönrock  Michaela Meyer  Werner Wosniok  Harry Harmens  Marina V. Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Alejo Carballeira  Helena Danielsson  Ludwig de Temmermann  Barbara Godzik  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Antti-Jussi Lindroos  Siiri Liiv  Sigurður H. Magnússon  Blanka Mankovska  Javier Martínez-Abaigar  Juha Piispanen  Jarmo Poikolainen  Ion V. Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko Špirić  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Lotti Thöni  Hilde Thelle Uggerud  Harald G. Zechmeister 《Environmental science and pollution research international》2016,23(11):10457-10476
For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.  相似文献   
5.
A biochemical oxygen demand (BOD) biosensor for effective and expeditious BOD(7) estimations was constructed and the non-steady phase of the output signal was extensively studied. The modelling approach introduced allows response curve reconstruction and a curve fitting procedure of good quality, resulting in parameters indicating the relationship between response and organic substrate concentration and stability properties of the BOD biosensor. Also, the immobilization matrixes of different thicknesses were characterized to determine their suitability for bio-sensing measurements in non-stationary conditions, as well as for the determination of the mechanical durability of the BOD biosensor in time. The non-steady response of the experimental output of the BOD biosensor was fitted according to the developed model that enables to determine the stability of the biosensor output and dependency on biodegradable organic substrate concentration. The calibration range of the studied BOD biosensor in OECD synthetic wastewater was 15-110 mg O(2) L(-1). Repeatability tests showed relative standard deviation (RSD) values of 2.8% and 5.8% for the parameter τ(d), characterizing the transient output of the amperometric oxygen sensor in time, and τ(s), describing the dependency of the transient response of the BOD biosensor on organic substrate concentration, respectively. BOD biosensor experiments for the evaluation of the biochemical oxygen demand of easily degradable and refractory municipal wastewater showed good concurrence with traditional BOD(7) analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号