首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   2篇
基础理论   1篇
污染及防治   3篇
评价与监测   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
In the present study, an activated charcoal (AC) plate was prepared by physical activation method. Its surface was coated with TiO2 nanoparticles by electrophoretic deposition (EPD) method. The average crystallite size of TiO2 nanoparticles was determined approximately 28 nm. The nature of prepared electrode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area measurement before and after immobilization. The electrosorption and photocatalytic one-stage combined process was investigated in degradation of Lanasol Red 5B (LR5B), and the effect of dye concentration, electrolyte concentration, pH, voltage, and contact time was optimized and modeled using response surface methodology (RSM) approach. The dye concentration of 30 mg L?1, Na2SO4 concentration of 4.38 g L?1, pH of 4, voltage of 250 mV, and contact time of 120 min were determined as optimum conditions. Decolorization efficiency increased in combined process to 85.65 % at optimum conditions compared to 66.03 % in TiO2/AC photocatalytic, 20.09 % in TiO2/AC electrosorption, and 1.91 % in AC photocatalytic processes.  相似文献   
2.
The critical loads approach is emerging as an attractive means for evaluating the effects of atmospheric deposition on sensitive terrestrial and aquatic ecosystems. Various approaches are available for modeling ecosystem responses to deposition and for estimating critical load values. These approaches include empirical and statistical relationships, steady-state and simple process models, and integrated-effects models. For any given ecosystem, the most technically sophisticated approach will not necessarily be the most appropriate for all applications; identification of the most useful approach depends upon the degree of accuracy needed and upon data and computational requirements, biogeochemical processes being modeled, approaches used for representing model results on regional bases, and desired degree of spatial and temporal resolution. Different approaches are characterized by different levels of uncertainty. If the limitations of individual approaches are known, the user can determine whether an approach provides a reasonable basis for decision making. Several options, including point maps, grid maps, and ecoregional maps, are available for presenting model results in a regional context. These are discussed using hypothetical examples for choosing populations and damage limits. The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract #68-C8-0006 with ManTech Environmental Technology, Inc., and Interagency Agreement #1824-B014-A7 with the U.S. Department of Energy and at Oak Ridge National Laboratory managed by Martin Marietta Energy Systems, Inc., under Contract DE-AC05-84OR21400 with the US Department of Energy. Environmental Sciences Division Publication No. 3904. It has been subjected to the agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   
3.
In a comprehensive program of environmental radioactivity survey in South Caspian region,137Cs inventories in soil has been measured at more than 50 sites in the Iranian northern province of Guilan. This has been the first wide-range survey of soil radionuclide inventories in the narrow band sensitive ecosystem of south Caspian shore. Radioactivity measurements were carried out using HPGe gamma-spectrometry system. The activity concentration of 137Cs in surface soil exhibits a mean value of 17.6 ± 9.4 Bq kg−1, with a range of 2.3–41.7 Bq kg−1. In many sites, split-level sampling method has been applied down to a depth of 20 cm. There were found generally two profiles. Most profiles exhibit a negative exponential distribution, while others revealed a clear subsurface peak in 5–10-cm layer. Cesium deposition in the study area has been estimated to be in the range of 0.38–2.9 kBq m−2 with a mean value of 1.7 kBq m−2. Distribution patterns of 137Cs concentration levels and deposition values have been estimated using Kriging interpolation method. Observed hotspots in deposition pattern coincide with areas of higher precipitation.  相似文献   
4.
The trophic state of the Anzali wetland was determined by nutrient analysis, indicating an alarming hypertrophic state. The Anzali wetland is environmentally and economically one of the most important ecosystems that is located in north-west Iran. This wetland was registered as a Ramsar site in September 1975, but due to many problems, particularly eutrophication created by excessive amounts of nutrients, it was registered in the Montreux record. This study was conducted for a year on 21 stations in three zones including receiving rivers, surface water and exiting rivers. Geographic information systems were used to better understand the prevailing situation. Analysis was conducted according to international standards and classification of OECD for freshwaters. The indicators used were levels of total nitrogen (TN) and total phosphorous (TP), and the trophic state index (TSI). Data showed an increase of excess nutrients from domestic and agricultural sources, leading to human, cultural eutrophication processes rather than natural eutrophication.  相似文献   
5.
Agricultural water management (AWM) is an interdisciplinary concern, cutting across traditional domains such as agronomy, climatology, geology, economics, and sociology. Each of these disciplines has developed numerous process‐based and empirical models for AWM. However, models that simulate all major hydrologic, water quality, and crop growth processes in agricultural systems are still lacking. As computers become more powerful, more researchers are choosing to integrate existing models to account for these major processes rather than building new cross‐disciplinary models. Model integration carries the hope that, as in a real system, the sum of the model will be greater than the parts. However, models based upon simplified and unrealistic assumptions of physical or empirical processes can generate misleading results which are not useful for informing policy. In this article, we use literature and case studies from the High Plains Aquifer and Southeastern United States regions to elucidate the challenges and opportunities associated with integrated modeling for AWM and recommend conditions in which to use integrated models. Additionally, we examine the potential contributions of integrated modeling to AWM — the actual practice of conserving water while maximizing productivity. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
6.
Environmental Science and Pollution Research - Microbial fuel cell (MFC) is a green technology that converts the stored chemical energy of organic matter to electricity; therefore, it can be used...  相似文献   
7.
Environmental Science and Pollution Research - The significance of opportunistic infections in immunocompromised patients and the enigmatic pathogenicity of Blastocystis directed us to conduct the...  相似文献   
8.
Controls on N Retention and Exports in a Forested Watershed   总被引:4,自引:0,他引:4  
We conducted a 15N-tracer study in a fertilized, forested catchment at the Bear Brook Watersheds in Maine (BBWM), USA, in order to characterize N cycling processes, identify sinks for ammonium-N additions, and determine the contribution of the experimental ammonium additions to nitrate exports from the treated catchment. Distributions of 15N in plant tissues, soils, precipitation and streamwater collected before adding tracers showed that nitrate-N (the dominant form of inorganic N deposition at the site) inputs under ambient conditions were depleted in 15N relative to plants and that soil was enriched in 15N relative to plants. The 15N content of streamwater nitrate was within the range of 15N contents in natural plant tissues, suggesting that nitrate deposited from the atmosphere is reduced and assimilated into soil and plant N pools before being leached as nitrate from the catchment. Variations in 15N natural abundances also suggested that most N uptake by trees is from the forest floor and that nitrification occurs in soils at this catchment under ambient conditions. Changes in 15N contents of plant tissues, soils and streamwater after adding a 15N tracer to the ammonium sulfate fertilizer applied to the treated catchment showed that soils were the dominant sink for the labeled ammonium. Surface soils (Oca horizon plus any underlying mineral soil to 5cm depth) assimilated 19 to 31 percent of the 42 kg ha-1 of 15N-labelled ammonium-N during the tracer study. Aboveground biomass assimilated 8 to 17 percent of the labeled ammonium-N additions. Of the three forest types on the catchment, the soil:biomass assimilation ratio of labeled-N was highest in the spruce forest, intermediate in the beech-dominated hardwood forest and lowest in the mixed hardwood-spruce forest. Although ammonium sulfate additions led to increases in streamwater nitrate, only 2 of the 13 kg ha-1 of nitrate-N exported from the catchment during the 2 years of tracer additions was derived from the 42 kg ha-1 of labeled ammonium-N additions.  相似文献   
9.
10.

Membranes and filters made of nanofibers can have many medicines and water treatment applications. The use of silver nanoparticles (AgNPs) with antibacterial activity in these structures improve their efficiency. However, due to the toxicity of the compounds used in the chemical synthesis of AgNPs, in this study, AgNPs were obtained through a biological process using Fusarium sporotrichioides. AgNPs preparation conditions were optimized, including F. sporotrichioides medium and AgNO3 concentration. Next, a PVA nanofiber membrane with bentonite and AgNPs (Bio-AgNPs or Chem-AgNPs) was prepared using electrospinning. The optimal conditions for the production of Bio-AgNPs were the culture of F. sporotrichioides in the MGYP culture medium and 12 M of AgNO3. The Bio-AgNPs particle size and zeta potential were 58 nm and ??16.8 mV, respectively, with antibacterial activity. The PVA/NB/AgNPs nanofibers operation conditions included 7.5% w/w PVA, 3% w/w bentonite, and AgNPs 5% w/w at a voltage of 11 kV, feed rate of 0.5 mL/h, and 15 cm distance between the needle and the collector. The average diameter of the PVA/NB/Bio-AgNPs nanofibers was 230 nm. Also, the presence of silver in the nanofibers was confirmed through EDX and XRD methods. The antibacterial assay of the nanofibers showed that the inhibition zone of PVA/NB/Bio-AgNPs against E. coli and S. aureus was 0.62 and 0.36 mm, which is better than PVA/NB/Chem-AgNPs and comparable with chloramphenicol. The produced membrane is suitable for water treatment, food packaging, and wound dressing because of its good thermal, mechanical, and antibacterial properties.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号