首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   1篇
评价与监测   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii), adults, from Livingston Island (South Shetlands), chosen as bioindicators, were used to test the quality of the Antarctic environment. Sex was not examined. The bioaccumulations of toxic trace elements (Cd, Pb, Al, and As), essential trace elements (Fe, Cu, Zn, Mn, Cr, V, Ni, and Sr), and major essential elements (Na, K, Mg, Ca, P, and S) were established. For the first time data about the element contents in Gentoo eggs is provided. Two hypotheses were tested: (1) there are differences in the metal levels among eggs and feathers; and (2) the element concentrations are highest in the excreta. The hypotheses were confirmed at 0.01-0.05 confidence levels. The concentrations of almost all trace elements were significantly higher in the feathers compared to those in the eggs. The following values of the concentrations ratio Fe/Zn were obtained: in the embryo, Fe/Zn = 1.5, and in the feathers, Fe/Zn = 0.5. The concentration of Pb in the embryo and excreta was below 0.4 μg/g, and Cd and As in eggs were below 0.05 and 0.3 μg/g, respectively. This indicates that there is no toxic risk for penguin offspring. Arsenic could be considered as a potential pollutant for Antarctic soil due to its relative high concentration in excreta, 5.13 μg/g. The present data (year 2007) were compared to the data for years 2002 and 2003. No trend of toxic element contamination was established. The concentrations of Pb, Cd, and As in representatives from the top of the food chain in the Antarctic (the present study) and Arctic (literature data) were compared. The data supports the hypothesis that there is an abnormality in cadmium levels in polar marine areas. Regarding Pb, the South Shetlands displayed 3-fold lower level compared to the Aleutians.  相似文献   
2.
SoilTrEC: a global initiative on critical zone research and integration   总被引:1,自引:0,他引:1  
Soil is a complex natural resource that is considered non-renewable in policy frameworks, and it plays a key role in maintaining a variety of ecosystem services (ES) and life-sustaining material cycles within the Earth's Critical Zone (CZ). However, currently, the ability of soil to deliver these services is being drastically reduced in many locations, and global loss of soil ecosystem services is estimated to increase each year as a result of many different threats, such as erosion and soil carbon loss. The European Union Thematic Strategy for Soil Protection alerts policy makers of the need to protect soil and proposes measures to mitigate soil degradation. In this context, the European Commission-funded research project on Soil Transformations in European Catchments (SoilTrEC) aims to quantify the processes that deliver soil ecosystem services in the Earth's Critical Zone and to quantify the impacts of environmental change on key soil functions. This is achieved by integrating the research results into decision-support tools and applying methods of economic valuation to soil ecosystem services. In this paper, we provide an overview of the SoilTrEC project, its organization, partnerships and implementation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号