首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   1篇
  2013年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In this study, we investigated the behavior of estrogens in the rhizosphere of white clover (Trifolium repens, clover hereafter) with two different pot tests, using soil and agar as growth media. In a pot test using agar spiked with estrogen, the estrogen concentration in the agar with clover decreased to non-detectable levels within one month, while in the agar without clover, 60% of initially added estrogen remained after one month. The half-lives of estrone (E1) and 17β -estradiol (E2) in the agar with clover were 2.4–3.8 and 13.2 d, respectively. The dissipation of E1 followed first-order rate law, while that of E2 fitted a zero-order reaction, indicating that they had different mechanisms of dissipation from agar. In the soil pot test, the behavior of E1 and E2 was not influenced by clover. An initial rapid decrease in the amount of estrogen extracted by methanol/acetic acid was followed by persistence for 1–3 months, regardless of presence of clover. Moreover, in three weeks E1 and E2 were only partly degraded by microbes extracted from the soil used in the pot test. In this study, abiotic degradation of estrogens and sorption of estrogen to soil, rather than the effects of soil microbes and clover, contributed to the initial rapid dissipation of estrogens in the soil. However, the results of the agar pot test suggested that vegetation such as clover may significantly contribute to removal of estrogens when estrogens in aqueous phase are discharged with surface runoff and preferential flow after heavy rain in agricultural fields, or when present in soils with low estrogen sorptivity.  相似文献   
2.
Shifts in manure phosphorus (P) chemical forms and pool sizes induced by water treatment residuals and industrial mineral by-products are largely undefined. We conducted a manure P fractionation study to determine mechanisms of reduction of dissolved reactive phosphorus (DRP) in poultry manure upon mineral by-product additions. The effects of composting on the P immobilization efficacy of the by-products were determined using laboratory self-heating composting simulators. The mineral by-products included an aluminum-water treatment residual (Al-WTR) and an iron-rich titanium-processing by-product. The noncomposted manure averaged 0.11 g g(-1) of total P as DRP forms. The by-products significantly reduced manure DRP, by an average of 39 and 48% in the Al- and the Fe-treated manure, respectively. The by-products also reduced the 0.5 M NH4F-extractable phosphorus (FEP) fraction. Shifts in P forms between FEP and 0.1 M NaOH-extractable phosphorus (SHEP) depended upon the Al and Fe contents of the by-products while the combined FEP + SHEP pool remained constant. Phosphate sorption measurements supported the observations that the Fe-rich by-product was more effective at reducing manure DRP and enhancing the formation of SHEP forms at the expense of FEP than the Al-WTR. Composting had no effect on the efficacy of either by-product to reduce DRP. Potential mechanisms of enhanced P stabilization in treated manure upon composting included chemical shifts from the DRP and FEP fractions to the citrate-bicarbonate-dithionite extractable P fraction. Thus, the choice of P immobilization agents affected the stability of immobilized P forms and should be taken into consideration in developing manure processing and nutrient stabilization methods.  相似文献   
3.
The occurrence of tetrodotoxin (TTX) in marine sinking particles was investigated. Sinking particles were collected in 1991 using sediment traps in the coastal area of Aburatsubo Inlet, Japan. TTX and related substances were analyzed by tissue culture bioassay, high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). TTX and related substances were detected from six samples. The concentrations were estimated to be ca. 200 to 1000 ng g-1 by the HPLC analyses. To our knowledge, this is the first report on the occurrence of TTX in particles in an aquatic environment. The present results indicate that sinking particles are one of the sources of TTX in the marine environment and that these particles play a role in the toxification of marine organisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号