首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
废物处理   1篇
综合类   14篇
基础理论   3篇
污染及防治   9篇
评价与监测   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1991年   1篇
  1983年   1篇
  1973年   1篇
  1972年   1篇
  1967年   2篇
  1964年   1篇
  1963年   1篇
  1958年   1篇
  1957年   2篇
  1956年   1篇
  1954年   1篇
  1952年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Bisphenol A is an endocrine disrupting compound, which is ubiquitous in the environment due to its wide use in plastic and resin production. Seven day old cultures of the litter-decomposing fungus Stropharia coronilla removed the estrogenic activity of bisphenol A (BPA) rapidly and enduringly. Treatment of BPA with purified neutral manganese peroxidase (MnP) from this fungus also resulted in 100% reduction of estrogenic activity, as analyzed using a bioluminescent yeast assay, and in the formation of polymeric compounds. In cultures of Stropharia rugosoannulata, estrogenic activity also quickly disappeared but temporarily re-emerged in the further course of cultivation. LC-MS analysis of the extracted estrogenic culture liquid revealed [M−H] ions with m/z values of 219 and 235. We hypothesize that these compounds are ring fission products of BPA, which still exhibit one intact hydroxyphenyl group to interact with estrogen receptors displayed by the yeast.  相似文献   
5.
6.
7.
8.
9.
Trichloroacetic acid (TCA, CCl(3)COOH) is a phytotoxic chemical. Although TCA salts and derivates were once used as herbicides to combat perennial grasses and weeds, they have since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, the high-volatile C(2)-chlorohydrocarbons tetrachloroethene (TECE, C(2)Cl(4)) and 1,1,1-trichloroethane (TCE, CCl(3)CH(3)) can react under oxidative conditions in the atmosphere to form TCA and other substances. The ongoing industrialisation of Southeast Asia, South Africa and South America means that use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere can be expected to rise. The increasing emissions of this substance--together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the southern hemisphere--could lead to a greater input/formation of TCA in the vegetation located in the lee of these emission sources. By means of biomonitoring studies, the input/formation of TCA in vegetation was detected at various locations in South America, North America, Africa, and Europe.  相似文献   
10.
Phosphine by bio-corrosion of phosphide-rich iron   总被引:1,自引:0,他引:1  
Phosphine is a toxic agent and part of the phosphorus cycle. A hitherto unknown formation mechanism for phosphine in the environment was investigated. When iron samples containing iron phosphide were incubated in corrosive aquatic media affected by microbial metabolites, phosphine was liberated and measured by gas chromatography. Iron liberates phosphine especially in anoxic aquatic media under the influence of sulfide and an acidic pH. A phosphine-forming mechanism is suggested: Phosphate, an impurity of iron containing minerals, is reduced abioticly to iron phosphide. When iron is exposed to the environment (e.g. as outdoor equipment, scrap, contamination in iron milled food or as iron meteorites) and corrodes, the iron phosphide present in the iron is suspended in the medium and can hydrolyze to phosphine. Phosphine can accumulate to measurable quantities in anoxic microbial media, accelerating corrosion and preserving the phosphine formed from oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号