首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
污染及防治   5篇
评价与监测   1篇
社会与环境   1篇
  2021年   2篇
  2014年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
In the routine São Paulo state (Brazil) surface water quality-monitoring program, which includes the Salmonella microsome mutagenicity assay as one of its parameters, a river where water is taken and treated for drinking water purposes has repeatedly shown mutagenic activity. A textile dyeing facility employing azo-type dyes was the only identifiable source of mutagenic compounds. We extracted the river and drinking water samples with XAD4 at neutral and acidic pH and with blue rayon, which selectively adsorbs polycyclic compounds. We tested the industrial effluent, raw, and treated water and sediment samples with YG1041 and YG1042 and compared the results with the TA98 and TA100 strains. The elevated mutagenicity detected with YG-strains suggested that nitroaromatics and/or aromatic amines were causing the mutagenicity detected in the samples analyzed. Positive responses for the blue rayon extracts indicated that mutagenic polycyclic compounds were present in the water samples analyzed. The mutagen or mixture of mutagens present in the effluent and water samples cause mainly frameshift mutations and are positive with and without metabolic activation. The Salmonella assay combined with different extraction procedures proved to be very useful in the identification of the origin of the pollution and in the identification of the classes of chemical compounds causing the mutagenic activity in the river analyzed.  相似文献   
2.
Environmental Science and Pollution Research - Organophosphate esters (OPEs) are substances globally used as flame retardants and plasticizers that have been detected in all environmental...  相似文献   
3.
To verify whether dyes emitted within the discharge of a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the following mutagenic samples: the treated industrial effluent, raw and treated water, and the sludge produced by a Drinking Water Treatment Plant (DWTP) located approximately 6 km from the industrial discharge. Considering that 20% of the dyes used for coloring activities might be lost to wastewaters and knowing that several dyes have mutagenic activity, we decided to analyze the samples for the presence of dyes. Thin layer chromatographic analysis indicated the presence of three prevalent dyes in all samples, except for the drinking water. This combination of dyes corresponded to a commercial product used by the industry, and it tested positive in the Salmonella assay. The structures of the dye components were determined using proton magnetic resonance and mass spectrometric (MS) methods, and the dyes were tested for mutagenicity. The blue component was identified as the C.I. Disperse Blue 373, the violet as C.I. Disperse Violet 93, and the orange as C.I. Disperse Orange 37. The dyes showed mutagenic responses of 6300, 4600, and 280 revertants/microg for YG1041 with S9 respectively. A bioassay-directed fractionation/chemical analysis showed that the C.I. Disperse Blue 373 contributed 55% of the mutagenic activity of the DWTP sludge. We showed that these dyes contributed to the mutagenic activity found in the Cristais River environmental samples analyzed and are indirectly affecting the quality of the related drinking water. Therefore, we believe that this type of discharge should be more thoroughly characterized chemically and toxicologically. Additionally, human and ecological risks associated with the release of dye processing plant effluents should be more fully investigated, especially where the resultant water is taken for human consumption.  相似文献   
4.
Environmental Science and Pollution Research - The dyes Auramine and Auramine O are used in several industrial products, despite the scarce information regarding their ecotoxicity. The aim of the...  相似文献   
5.
Triclosan (TCS) is a broad-spectrum bactericide, highly toxic to algae, which is released into the environment via wastewater effluents. Predicted no-effect concentrations (PNECs) for aquatic biota have been proposed in the literature, varying from 1.4 to 1,550 ng/L, reflecting contradicting protection goals. In this work, six rivers in the state of São Paulo were monitored for TCS and caffeine, a tracer for untreated sewage disposal, over a period of more than 1 year. From 71 samples analyzed, 32 contained TCS at concentrations above the limit of quantification, ranging from 2.2 to 66 ng/L, corresponding to a frequency of exceedance of the lowest PNEC of 86 % (six out of seven sites). No correlation between TCS and caffeine was observed, and one of the reasons for that could be the different use patterns in the local populations. Given the high values found in the investigated rivers, TCS seems to be a strong candidate in the priority list of compounds that should be regulated in Brazil to preserve the aquatic environment.  相似文献   
6.
Estrogenic Endocrine Disrupting Chemicals (EDCs) are a concern due to their ubiquity and recognized adverse effects to humans and wildlife. Methods to assess exposure to and associated risks of their presence in aquatic environment are still under development. The aim of this work is to assess estrogenicity of raw and treated waters with different degrees of pollution. Chemical analyses of selected EDCs were performed by liquid chromatography-tandem mass spectrometry, and estrogenic activity was evaluated using in vitro bioluminescent yeast estrogen assay (BLYES). Most raw water samples (18/20) presented at least one EDC and 16 rendered positive in BLYES. When EDCs were detected, the bioassay usually provided a positive response, except when only bisphenol A was detected at low concentrations. The highest values of estrogenic activity were detected in the most polluted sites. The maximum estrogenic activity observed was 8.7 ng equiv. of E2 L(-1). We compared potencies observed in the bioassay to the relative potency of target compounds and their concentrations failed to fully explain the biological response. This indicates that bioassay is more sensitive than the chemical approach either detecting estrogenic target compounds at lower concentrations, other non-target compounds or even synergistic effects, which should be considered on further investigations. We have not detected either estrogenic activity or estrogenic compounds in drinking water. BLYES showed good sensitivity with a detection limit of 0.1 ng equiv. E2 L(-1) and it seems to be a suitable tool for water monitoring.  相似文献   
7.
The genotoxic activity of water samples collected in 9 different sites within the area of the Santos estuary was preliminary evaluated, and related to previous data on the genotoxicity of sediments and the contents of PAHs in both water and sediment samples. The liquid discharge of a steel mill (coke plant), known to be mutagenic, was chemically analyzed to determine its PAH content. For the water evaluation we employed the Salmonella/microsome assay with the strains TA98 and TA100 with and without S9 mix in the plate incorporation method. The water was filtered with an AP20 membrane before being extracted with XAD4 at natural and acidic pH. The industrial effluent was filtered in 0.45 microm membranes before being extracted with the liquid/liquid method. Both membranes containing the particulate material were extracted using ultrasonication. PAHs were found associated with the suspended particles present in the industrial effluent in accordance with mutagenicity data previously reported. In relation to the estuarine waters, sites 1 and 5 presented low levels of mutagenic activity only in the filtered water (liquid fraction) extracts. At site 3, both the filtered water and particulate solids presented also low mutagenicity. Results show that the mutagenic activity observed in water could not be directly related to the genotoxic activity and PAHs contents of the bottom sediments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号