首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
污染及防治   2篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 156 毫秒
1
1.
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that exert neurodevelopmental and neurobehavioral effects in vivo in humans and animals. Acute in vitro neurotoxic effects include changes in cell viability, oxidative stress, and basal intracellular calcium levels. Though these acute cellular effects could partly explain the observed in vivo effects, other mechanisms, such as effects on calcium influx and neurotransmitter receptor function, likely contribute to the disturbance in neurotransmission. This concise review combines in vitro data on cell viability, oxidative stress and basal calcium levels with recent data that clearly demonstrate that (hydroxylated) PCBs and (hydroxylated) PBDEs can exert acute effects on voltage-gated Ca2+ channels as well as on excitatory and inhibitory neurotransmitter receptors in vitro. These novel mechanisms of action are shared by NDL-PCBs, OH-PBDEs, and some other persistent organic pollutants, such as tetrabromobisphenol-A, and could have profound effects on neurodevelopment, neurotransmission, and neurobehavior in vivo.  相似文献   
2.
The non-dioxin-like PCBs (NDL-PCBs) found in food and human samples have a complex spectrum of adverse effects, but lack a detailed risk assessment. The toxicity profiles of 21 carefully selected PCBs (19 NDL-PCBs) were identified by in vitro screening in 17 different assays on specific endpoints related to neurotoxicity, endocrine disruption and tumor promotion. To ensure that the test results were not affected by polychlorinated dioxins, dibenzofurans or DL-PCB contaminants, the NDL-PCB congeners were thoroughly purified before testing. Principal component analysis (PCA) was used to derive general toxicity profiles from the in vitro screening data. The toxicity profiles indicated different structure-activity relationships (SAR) and distinct mechanisms of action. The analysis also indicated that the NDL-PCBs could be divided into two groups. The first group included generally smaller, ortho-substituted congeners, comprising PCB 28, 47, 51, 52, 53, 95, 100, 101, 104 and 136, with PCB 95, 101 and 136 as generally being most active. The second group comprising PCB 19, 74, 118, 122, 128, 138, 153, 170, 180 and 190 had lower biological activity in many of the assays, except for three endocrine-related assays. The most abundant congeners, PCB 138, 153, 170, 180 and 190, cluster in the second group, and thereby show similar SAR. Two quantitative structure-activity relationship (QSAR) models could be developed that added information to the SAR and could aid in risk assessments of NDL-PCBs. The QSAR models predicted a number of congeners as active and among these e.g., PCB 18, 25, 45 and 49 have been found in food or human samples.  相似文献   
3.
Agri-environment schemes in the Netherlands have been criticized for their lack of effectiveness. Explanations were sought in the limited size of the individual farm and in the shallowness of the measures. We distinguish three scale problems: in the spatial dimension (from farm element to landscape), in the management dimension (from add-on measure to farming system) and in the governance dimension (from little to much space for self-governance by farmers). These scale concepts are used to translate insights from ecology and agro-economy to governance approaches. We analyse case studies of two new approaches: an area approach with group contracts and spatial coordination of agri-environmental measures, and a farming system with substantial adaptations of the farming concept. Both approaches have elements of increased self-governance and could offer inspiration for schemes elsewhere. We propose that appropriate space for self-governance is necessary when choosing another scale approach for making agri-environment schemes more effective.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号