首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
  2001年   1篇
  1981年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Eulerian derivation of the fractional advection-dispersion equation   总被引:4,自引:0,他引:4  
A fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the second-order derivative is replaced with a fractional-order derivative. In contrast to the classical ADE, the fractional ADE has solutions that resemble the highly skewed and heavy-tailed breakthrough curves observed in field and laboratory studies. These solutions, known as alpha-stable distributions, are the result of a generalized central limit theorem which describes the behavior of sums of finite or infinite-variance random variables. We use this limit theorem in a model which sums the length of particle jumps during their random walk through a heterogeneous porous medium. If the length of solute particle jumps is not constrained to a representative elementary volume (REV), dispersive flux is proportional to a fractional derivative. The nature of fractional derivatives is readily visualized and their parameters are based on physical properties that are measurable. When a fractional Fick's law replaces the classical Fick's law in an Eulerian evaluation of solute transport in a porous medium, the result is a fractional ADE. Fractional ADEs are ergodic equations since they occur when a generalized central limit theorem is employed.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号