首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
安全科学   2篇
基础理论   1篇
污染及防治   1篇
  2023年   1篇
  2022年   1篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 828 毫秒
1
1.
Environmental Science and Pollution Research - Telomere length (TL) at birth is related to diseases that may arise in the future and long-term health. Bisphenols exhibit toxic effects and can cross...  相似文献   
2.
本文阐述了防护装备检测实验室仪器设备的管理程序,从仪器设备配置策划、流转管理、维护和保养等方面进行详细论述,提出仪器设备管理的建议及思路.  相似文献   
3.
按国标GB/T7702.11-1997<煤质颗粒活性炭试验方法苯蒸气防护时间的测定>对煤质颗粒活性炭苯吸附时间进行测定,评定了测量结果的不确定度,确定了测量结果的不确定度的主要因素,并就如何提高测量结果的可靠性提出了建议.  相似文献   
4.
● Cu addition enhances CH3OH oxidation and alleviates its inhibitory effect on SCR. ● Cu addition improves the activation of SCR reactants in the presence of methanol. ● Damaged structure by more Cu addition decreases specific surface area and acidity. ● Excessive Cu addition would lead to the narrowing of SCR temperature window. Simultaneously removal of NOx and VOCs over NH3-SCR catalysts have attracted lots of attention recently. However, the presence of VOCs would have negative effect on deNOx efficiency especially at low temperature. In this study, copper modification onto Sb0.5CeZr2Ox (SCZ) catalyst were performed to enhance the catalytic performance for simultaneous control of NOx and methanol. It was obtained that copper addition could improve the low-temperature activity of both NOx conversion and methanol oxidation, where the optimal catalyst (Cu0.05SCZ) exhibited a deNOx activity of 96% and a mineralization rate of 97% at 250 °C, which are around 10% higher than that of Cu free sample. The characterization results showed that copper addition could obviously enhance the redox capacity of the catalysts. As such, the inhibition effect of methanol incomplete oxidation on NO adsorption and NH3 activation were then lessened and the conversion of surface formamide species were also accelerated, resulting in the rising of NOx conversion at low temperature. However, excessive copper addition would damage the Sb-Ce-Zr oxides solid solution structure owing to Cu-Ce strong interactions, decreasing the surface area and acidity. Meanwhile, due to easier over-oxidation of NH3 with more Cu addition, the temperature window for NOx conversion would become quite narrow. These findings could provide useful guidelines for the synergistic removal of VOCs over SCR catalyst in real application.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号