首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
污染及防治   2篇
  2013年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
2.
Comparison of aerobic and anaerobic biotreatment of municipal solid waste   总被引:4,自引:0,他引:4  
To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
3.
Selenium (Se) concentrations exceeding ecological guidelines for sediments and suspended particulate matter (SPM) have been observed in the northern reach of the San Francisco Bay estuary. Longterm availability of elevated Se in wetland sediments depends in part on the fluxes controlling Se distribution. The relative contribution of sedimentary vs. post-depositional Se fluxes in two San Francisco Bay intertidal wetlands was estimated. Selenium concentrations on surface wetland sediments were compared with levels on SPM, and with previously established background levels in San Francisco Bay sediments. Sediment Se fluxes to the wetlands were measured directly using sediment traps. Although dissolved Se concentrations are higher than particulate Se concentrations in San Francisco Bay water, sediment input into the system provides the major flux of Se. Strong correlation between Se and C on SPM (r2 = 0.81) indicates the importance of organic particulate deposition. Dependence on sediment texture was qualitatively established by measuring Se on particle-size separates. Normalization to Al showed that 65% of Se spatial variability is related to sediment texture. Selenium is further enriched in the marsh via post-depositional inputs, probably due to in situ adsorption from overlying water and chemical reduction. According to sediment flux measurements, enrichment in the marsh is equivalent to 20 to 25% of the particulate Se flux, thereby defining the marsh as a Se sink. These findings highlight the need for more intensive monitoring of SPM as the major source of Se to intertidal wetlands.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号