首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
评价与监测   2篇
  2016年   1篇
  2002年   2篇
  1971年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
This paper begins with a brief review of radiation theory as applied to water temperature determinations. Errors introduced in “radiant” temperature measurements due to nonblackness of the water surface and the effects of the atmosphere are included in this discussion. The airborne scanner system is described. Analysis and display of scanner data using the Laboratory for Applications of Remote Sensing (LARS) display system are discussed. Thermal maps of four sections of the Wabash River are included and points of interest of each map are discussed in the text.  相似文献   
2.
The purposes of this study are: (1) to determine whether proficiency analytical test (PAT) materials from the American Industrial Hygiene Association can be used to provide quality data for portable X-ray fluorescence analysis (XRF) of lead in dust wipe surface samples; (2) to provide data to determine whether the on-site analysis of field dust wipe samples by XRF and the laboratory method of inductively coupled plasma emission analysis (ICP) are comparable; and (3) to determine if differences exist between different wipe materials. Several wipes meet the ASTM E1792 performance requirements of lead background level less than 5 microg per wipe, be only one layer thick, yield recovery rates of 80- 120% from spiked samples, remain damp throughout the sampling procedure, and do not contain aloe. The wipes used in this study were Pace Wipes, which are used for the PAT materials, and, for the field samples, Palintest Wipes, which were supplied by the instrument manufacturer, and Ghost Wipes, which are popular because they digest in hot, concentrated acid, so that chemical analysis is simplified. Twenty PAT wipe samples were obtained from four different proficiency test rounds. Surface wipe samples were taken at three different locations representing different industry types. All samples were analyzed using a portable XRF spectrometer and by ICP. Strong linear relationships were found for the analysis of wipe samples by ICP and by portable XRF. For the PAT samples, the results from the ICP and XRF analysis were not statistically equivalent, which indicates a bias in the ICP analysis. The bias was not excessive, since all ICP analyses fell within the acceptable range for the proficiency samples. The good correlation between the proficiency sample reference values and the XRF determinations is not surprising considering similar proficiency samples were used to calibrate the instrument response. Users of this portable XRF analyzer could enroll in the proficiency test program as part of their quality assurance program. For field samples, the relationship was strongest for Palintest wipes, and the values found for all three industries could be combined. However, the results from the ICP and XRF analysis were not statistically equivalent using the correction factor in the calculation algorithm as supplied with the instrument, and a new coefficient was derived. The mean relative error for the XRF analysis versus the ICP analysis was greater than 25%, such that the method falls within the realm of screening procedures. For Ghost Wipe samples, the precision was different for different industries, and the results could not be pooled. Differences between the two wipe materials may be related to the number of folds required for analysis.  相似文献   
3.
The wide application of microalgae in the field of wastewater treatment and bioenergy source has improved research studies in the past years. Microalgae represent a good source of biomass and bio-products which are used in different medical and industrial activities, among them the production of high-valued products and biofuels. The present review focused on greywater treatment through the application of phycoremediation technique with microalgae and presented recent advances in technologies used for harvesting the microalgae biomass. The advantages and disadvantages of each method are discussed. The microbiological aspects of production, harvesting and utilization of microalgae biomass are viewed.  相似文献   
4.
In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号