首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
评价与监测   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Kimpo metropolitan landfill has received various kinds of wastessince January 1992. The leachate level was measured to be 10.3 m in May 1995 and the level increased to 12.2 m in August 1996. Therefore, to prove the reason for the increasing leachate level, we calibrated hydraulic conductivity of each waste andintermediate layer using the HELP (Hydrologic Evaluation ofLandfill Performance) model. The leachate generation data measured from February 1993 to October 1995 was used in the model calibration. As a result of a model calibration, we obtained anaverage infiltration ratio and used this in analysis of the total water balance to predict elevation of leachate level. Main causes of the elevation of the leachate level were the high water content of the waste and the degradation of the leachate-drainage system caused by the subsidence of a naturalbarrier layer.  相似文献   
2.
This study conducted a combined adsorption-sequential extractionanalysis (CASA), by which five phases (i.e., exchangeable, carbonate, Mn-Oxide, organic, and Fe-Oxide phases) of adsorbed heavy metals were analyzed, to investigate temperature effects on single and competitive adsorptions of Zn(II) and Cu(II) ontonatural clays. In the case of single adsorption of Zn, the exchangeable phase adsorption decreased from 65 to 40%, but thecarbonate phase adsorption increased from 30 to 40%, with an increase in temperature from 15 to 55 °C. However, in itscompetitive adsorption with Cu, Zn was mostly present in the exchangeable phase (over 90%), and with an increase in temperature, the exchangeable phase adsorption decreased only 10%. In the case of Cu, over 50% among the total amount of adsorption was present in the carbonate phase in both cases ofsingle and competitive adsorptions. The carbonate phaseadsorption of Cu increased from 56 to 61% and from 60 to 66% in single and competitive adsorptions, respectively, with atemperature increase. These results show that in the case of Zn,the major mechanism of retention in natural clay soils might beexchangeable phase adsorption, especially in the case of competitive adsorption with Cu. However, in the case of Cu, the major mechanism might be carbonate phase adsorption, which is known to be a more immobile phase than exchangeable phase adsorption. It seems that the adsorption of Zn and Cu onto natural clays is an endothermic reaction, which represents thatthe adsorption equilibrium constants and capacities increase with a temperature increase, with the exception of exchangeablephase adsorption.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号