首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
评价与监测   3篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 656 毫秒
1
1.
An ecological perspective on nanomaterial impacts in the environment   总被引:1,自引:0,他引:1  
Growing concerns over the potential for unintended, adverse consequences of engineered nanoparticles (ENPs) in the environment have generated new research initiatives focused on understanding the ecological effects of ENPs. Almost nothing is currently known about the fate and transport of ENPs in environmental waters, soils, and sediments or about the biological impacts of ENPs in natural environments, and the bulk of modern nanotoxicogical research is focused on highly controlled laboratory studies with single species in simple media. In this paper, we provide an ecological perspective on the current state of knowledge regarding the likely environmental impacts of nanomaterials and propose a strategy for making rapid progress in new research in ecological nanoscience.  相似文献   
2.
A natural deactivation of chrysotile asbestos occurs on serpentinite rocks where lichens selectively grow on the fibres and secrete metabolites, including oxalic acid, which, in the long term, turn the fibres into a non-toxic amorphous material.  相似文献   
3.
Titanium dioxide (TiO(2)) is the most extensively used engineered nanoparticle to date, yet its fate in the soil environment has been investigated only rarely and is poorly understood. In the present study, we conducted two field-scale investigations to better describe TiO(2) nano- and larger particles in their most likely route of entry into the environment, i.e., the application of biosolids to soils. We particularly concentrated on the particles in the nano-size regime due to their novel and commercially useful properties. First, we analyzed three sewage sludge products from the US EPA TNSSS sampling inventory for the occurrence, qualitative abundance, and nature of TiO(2) nano- and larger particles by using analytical scanning electron microscopy and analytical (scanning) transmission electron microscopy. Nano- and larger particles of TiO(2) were repeatedly identified across the sewage sludge types tested, providing strong evidence of their likely concentration in sewage sludge products. The TiO(2) particles identified were as small as 40 nm, and as large as 300 nm, having faceted shapes with the rutile crystal structure, and they typically formed small, loosely packed aggregates. Second, we examined surface soils in mesocosms that had been amended with Ag nanoparticle-spiked biosolids for the occurrence of TiO(2) particles. An aggregate of TiO(2) nanoparticles with the rutile structure was again identified, but this time TiO(2) nanoparticles were found to contain Ag on their surfaces. This suggests that TiO(2) nanoparticles from biosolids can interact with toxic trace metals that would then enter the environment as a soil amendment. Therefore, the long-term behavior of TiO(2) nano- and larger particles in sewage sludge materials as well as their impacts in the soil environment need to be carefully considered.  相似文献   
4.
Aquatic environmental nanoparticles   总被引:5,自引:0,他引:5  
Researchers are now discovering that naturally occurring environmental nanoparticles can play a key role in important chemical characteristics and the overall quality of natural and engineered waters. The detection of nanoparticles in virtually all water domains, including the oceans, surface waters, groundwater, atmospheric water, and even treated drinking water, demonstrates a distribution near ubiquity. Moreover, aquatic nanoparticles have the ability to influence environmental and engineered water chemistry and processes in a much different way than similar materials of larger sizes. This review covers recent advances made in identifying nanoparticles within water from a variety of sources, and advances in understanding their very interesting properties and reactivity that affect the chemical characteristics and behaviour of water. In the future, this science will be important in our vital, continuing efforts in water safety, treatment, and remediation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号