首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
基础理论   1篇
污染及防治   4篇
评价与监测   2篇
社会与环境   3篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
排序方式: 共有10条查询结果,搜索用时 218 毫秒
1
1.
The eastern Mediterranean and Middle East, a region with diverse socioeconomic and cultural identities, is exposed to strong climatic gradients between its temperate north and arid south. Model projections of the twenty-first century indicate increasing hot weather extremes and decreasing rainfall. We present model results, which suggest that across the Balkan Peninsula and Turkey climate change is particularly rapid, and especially summer temperatures are expected to increase strongly. Temperature rise can be amplified by the depletion of soil moisture, which limits evaporative cooling, prompted by the waning of large-scale weather systems that generate rain. Very hot summers that occurred only rarely in the recent past are projected to become common by the middle and the end of the century. Throughout the region, the annual number of heat wave days may increase drastically. Furthermore, conditions in the region are conducive for photochemical air pollution. Our model projections suggest strongly increasing ozone formation, a confounding health risk factor particularly in urban areas. This adds to the high concentrations of aerosol particles from natural (desert dust) and anthropogenic sources. The heat extremes may have strong impacts, especially in the Middle East where environmental stresses are plentiful.  相似文献   
2.
Climate changes in the Mediterranean region, related to a significant increase in temperature and changes in precipitation patterns, can potentially affect local economies. Agriculture and tourism are undoubtedly the most important economic sources for Greece and these may be more strongly affected by changing future climate conditions. Climate change and their various negative impacts on human life are also detected in their environment; hence this study deals with implications, caused by changing climate, in urban and forest areas. Potential changes for the mid-twenty-first century (2021–2050) are analysed using a high-resolution regional climate model. This paper presents relevant climatic indices, indicative for potential implications which may jeopardise vital economic/environmental sectors of the country. The results provide insights into particular regions of the Greek territory that may undergo substantial impacts due to climate change. It is concluded that the duration of dry days is expected to increase in most of the studied agricultural regions. Winter precipitation generally decreases, whereas an increase in autumn precipitation is projected in most areas. Changing climate conditions associated with increased minimum temperatures (approximately 1.3°C) and decreased winter precipitation by 15% on average suggest that the risk for forest fires is intensified in the future. In urban areas, unpleasantly high temperatures during day and night will increase the feeling of discomfort in the citizens, while flash floods events are expected to occur more frequently. Another impact of climate change in urban regions is the increasing energy demand for cooling in summer. Finally, it was found that continental tourist areas of the Greek mainland will more often face heatwave episodes. In coastal regions, increased temperatures especially at night in combination with high levels of relative humidity can lead to conditions that are nothing less than uncomfortable for foreigners and the local population. In general, projected changes associated with temperature have a higher degree of confidence than those associated with precipitation.  相似文献   
3.
Volatile organic compounds in the surface waters of northern Greece   总被引:2,自引:0,他引:2  
An investigation into the occurrence of volatile organic compounds (VOCs) was conducted for a period of two years in the surface waters of Northern Greece. Samples from four rivers and five lakes were taken seasonally and analyzed for VOCs. The analysis has been performed by purge-and-trap (PAT) gas chromatographic-mass spectrometric (GC-MS) technique. The most commonly encountered VOCs in surface waters were chloroform, carbon tetrachloride, trichloroethylene, dichlorobromomethane, tetrachloroethylene, and chlorodibromomethane.  相似文献   
4.
The behaviour of the haloketones (HKs) 1,1-Dichloropropanone (1,1-DCP), 1,1,1-Trichloropropanone (1,1,1-TCP) and 1,3-Dichloropropanone (1,3-DCP) in ultrapure water solutions and in fortified drinking water samples was investigated. Their concentrations were determined at regular time intervals by the use of a gas chromatography-electron capture detector (GC-ECD) method. Two different temperatures were studied. The results have shown that HKs decompose both in ultrapure water solutions and in drinking water samples. The decomposition rates are higher in the drinking water samples, especially at higher temperature. 1,1,1-TCP is the compound which decomposes fastest followed by 1,3-DCP and 1,1-DCP. Chloroform was formed both in the ultrapure water solutions and in the drinking water samples, probably due to the decomposition of 1,1,1-TCP. In the drinking water samples, formation of chloral hydrate was also observed.  相似文献   
5.
Organochlorine pesticides in the surface waters of Northern Greece   总被引:8,自引:0,他引:8  
A survey undertaken in Northern Greece has shown that organochlorine pesticides are present in the surface waters. Surface water samples have been collected seasonally from four rivers and five lakes for a period of two years. Solid-phase extraction followed by gas chromatographic techniques with electron capture detection was used for the determination of the compounds. The most commonly encountered organochlorine pesticides in surface waters were the isomers of hexachlorocyclohexane, aldrin, dieldrin and endosulfan sulfate. In some cases the concentrations detected were higher than the qualitative target levels set by the European Union, especially for hexachlorocyclohexane and aldrin. The occurrence of these compounds in Greek surface waters can be attributed to intense agricultural activity as well as to transboundary pollution.  相似文献   
6.
The priority substances of List I, 76/464/EEC Directive, some of which belong to the new Water Framework Directive 2000/60/EC, have been monitored in the surface waters of Greece through the developed network of 53 sampling stations. The analytical methods used for the determination of these substances included Purge and Trap-Gas chromatography-Mass spectrometry for volatile and semivolatile organic compounds, Gas Chromatography-Electron Capture Detection for organochlorine insecticides, High Performance Liquid Chromatography for pentachlorophenol and Atomic Absorption Spectrometry for metals. The results have shown the presence of several priority substances in Greek surface waters, in most cases at concentrations well below the regulatory limits. However, non-compliance was observed for a limited number of compounds. The monitoring network and the analytical determinations have to be expanded to more water bodies and more priority substances, in order to safeguard the quality of Greek surface waters.  相似文献   
7.
The pollution of the surface waters of Greece from the priority compounds of 76/464/EEC Directive was evaluated. The occurrence of 92 toxic compounds, 64 of which belong to priority compounds of List II, candidates for List I, of 76/464/EEC Directive, was studied in surface waters and wastewater through the developed network of 62 sampling stations, which covers the whole Greek territory. The analytical determination was performed by Purge and Trap-Gas chromatography-Mass spectrometry for volatile and semivolatile organic compounds (VOCs), Gas Chromatography-Electron Capture Detection for organochlorine insecticides, Gas Chromatography-Nitrogen Phosphorous Detection for organophosphorous insecticides, High Performance Liquid Chromatography-Photodiode Array Detection for herbicides, and Electrothermal Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) for metals and the toluene extractable organotin compounds. The concentrations of VOCs and insecticides detected in the surface waters of Greece were very low, whereas the concentrations of herbicides and metals ranged generally at moderate levels. VOCs were detected almost exclusively in the rivers and very rarely in the lakes, while the frequency of occurrence of insecticides, herbicides and metals was similar for rivers and lakes. Water quality objectives (WQO) and emission limit values (ELV) have been laid down in national legal framework for a number of compounds detected in the samples, in order to safeguard the quality of surface waters from any future deterioration.  相似文献   
8.
An investigation of the decomposition of dihaloacetonitriles (DHANs) in water solutions and fortified drinking water samples was conducted. The concentrations of dichloroacetonitrile (CHCl2CN, DCAN), bromochloroacetonitrile (CHBrClCN, BCAN) and dibromoacetonitrile (CHBr2CN, DBAN) were determined by a gas chromatography mass spectrometry (GC-MS) method at regular time intervals and different temperatures. The effect of sodium thiosulfate (Na2S2O3), which is used as a preservative in water samples, was also examined. The rates of decomposition were determined for each compound. The results show that the reactions are faster in fortified drinking water samples than in ultrapure water solutions. They are also favored at higher temperature, especially when sodium thiosulfate is present. The highest decomposition rate is shown by DCAN, followed by BCAN and DBAN, while at the presence of sodium thiosulfate the decomposition of DBAN is the fastest.  相似文献   
9.
Chlorination is the most widely used technique for disinfection of drinking water. A consequence of chlorination is the formation of Disinfection By-Products (DBPs). The formation of DBPs in drinking water results from the reaction of chlorine with naturally occurring organic materials, principally humic and fulvic acids. This paper focuses on the effect of humic substances on the formation of twenty-four compounds belonging to different categories of DBPs. This investigation was conducted in two water treatment plants in Greece, Menidi and Galatsi, from July 1999 to April 2000. Humic substances were determined by the diethylaminoethyl (DEAE) method with subsequent UV measurement. The techniques used for the determination of DBPs were liquid-liquid extraction, gas chromatography and mass spectrometry. The concentrations of DBPs were generally low. Total trihalomethanes (TTHMs) ranged from 5.1 to 24.6 microg L(-1), and total haloacetic acids (HAAs) concentration ranged from 8.6 to 28.4 microg L(-1), while haloaketones (HKs) and chloral hydrate (CH) occurred below 1 microg L(-1). The content of humic substances was found to influence the formation of DBPs and especially TTHMs, trichloroacetic acid (TCA), dibromoacetic acid (DBA), CH, 1,1-dichloropropanone (1.1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP). Seasonal variation of TTHMs and HAAs generally followed that of humic substances content with peaks occurring in autumn and spring. The trends of 1,1-DCP, 1,1,1-TCP and CH formation seemed to be in contrast to TTHMs and HAAs. Trends of formation of individual compounds varied in some cases, probably due to influence of parameters other than humic substances content. Statistical analysis of the results showed that the concentrations of TTHMs, CH, 1,1-DCP, 1,1,1-TCP, TCA and DBA are strongly affected from humic substances content (at 0.01 confidence level). The opposite is true for dichloroacetic acid (DCA) concentration. Humic substances also vary to a statistically significant degree during different months, as well as the concentrations of TTHMs, CH, 1,1-DCP, 1,1,1-TCP, TCA and DCA. The variance of DBA was not statistically significant. Regarding the effect of sampling station, humic substances content showed no statistically significant difference between the two raw water sources studied.  相似文献   
10.
The hydrodynamic behavior of two annual legumes (Trifolium angustifolium L. and Onobrychis caput-galli (L.) Lam.) under water shortage was studied in a rain shelter experiment. Seeds were collected from natural grasslands of northern Greece and were sown in pots. Two months after seedlings' emergence, full irrigation (up to field capacity) and limited irrigation (40% of field capacity) were applied. During the vegetative period the leaf water potential and the relative water content were measured at seven day intervals in both treatments. T. angustifolium retained the lowest values of psi both under full (-0.11 to -1.78 MPa) and limited irrigation (-0.16 to -2.90 MPa), while the highest values in both cases were those of O. caput-galli (-0.05 to -0.5 MPa). The results suggested that T. angustifolium was the species mostly affected by limited water supply. T. angustifolium seemed to display adaptation mechanisms to drought similar to those of perennial plants. O. caput-galli displayed a more isohydric behavior by not altering its water potential under limited irrigation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号