首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
污染及防治   4篇
评价与监测   2篇
  2010年   2篇
  2009年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 140 毫秒
1
1.
A detailed gas-phase photochemical chamber box model, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for the model anthropogenic aromatic compound 1,3,5-trimethylbenzene, has been used to simulate data measured during a series of aerosol chamber experiments in order to evaluate the mechanism under a variety of VOC/NOx conditions.The chamber model was used in the interpretation of comprehensive high (mass and time) resolution measurements of 1,3,5-trimethylbenzene and its photo-oxidation products recorded by a Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). Supporting gas and aerosol measurements have also enabled us to explore the ‘missing link’ between the gas and aerosol phases. Model-measurement comparisons have been used to gain insight into the complex array of oxygenated products formed, including the peroxide bicyclic ring opening products (α,β-unsaturated-γ-dicarbonyls and furanones) and the O2-bridged peroxide bicyclic ring-retaining products. To our knowledge this is the first time such high molecular weight species, corresponding to various peroxide bicyclic products represented in the MCMv3.1, have been observed in the gas-phase. The model was also used to give insight into which gas-phase species were participating in SOA formation, with the primary and secondary peroxide products, formed primarily under low NOx conditions, identified as likely candidates.  相似文献   
2.
Socially Responsible Investing (SRI) has carved out a niche in the financial world, and each year a large number of shareholder proposals are filed at public companies in the US related to issues of corporate social responsibility (CSR). While the primary interests of CSR activists remain distinct from those of traditional corporate governance (CG) activists, the two groups do share an interest in minimizing the risk of negative environmental or social impacts from the operations of the corporation. They also share the objective of achieving transparency and accountability in corporate decision‐making. In relation to this latter objective, they both face similar challenges concerning conflicts of interest among key institutional shareholders. This article examines the record of shareholder proposal filing and voting from 2000–2003 for 81 large US public corporations to determine the relative prominence of CSR shareholder activism and the prospects for effective CSR shareholder activism on key environmental issues. The analysis of these data finds that nearly half (45%) of all shareholder resolutions are related to CSR, and that those resolutions which combine issues of CSR with traditional CG activism appeal to slightly more shareholders than issues of CSR alone. The article also examines shareholder activism at the micro level with a case study of the voting record at ExxonMobil. The article finds that CSR‐related shareholder activism represents the majority of shareholder activism within that firm and that resolutions targeted at climate change are particularly well supported. These resolutions draw a connection between environmental risk and risk to shareholder value. While numerous challenges remain for both CG and CSR activists, the article concludes that reforms that strengthen shareholder rights and corporate governance more generally will also benefit CSR activists and the environmental policies they promote in particular. The article ends with some proposed solutions for addressing the perceived conflicts of interest in corporate governance and the shareholder voting process.  相似文献   
3.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   
4.
Speciated volatile organic compound (VOC) and carbon monoxide (CO) measurements from the Marylebone Road site in central London from 1998 through 2008 are presented. Long-term trends show statistically significant decreases for all the VOCs considered, ranging from ?3% to ?26% per year. Carbon monoxide decreased by ?12% per year over the measurement period. The VOC trends observed at the kerbside site in London showed greater rates of decline relative to trends from monitoring sites in rural England (Harwell) and a remote high-altitude site (Hohenpeissenberg), which showed decreases for individual VOCs from ?2% to ?13% per year. Over the same 1998 through 2008 period VOC to CO ratios for London remained steady, an indication that emissions reduction measures affected the measured compounds equally. Relative trends comparing VOC to CO ratios between Marylebone Road and Hohenpeissenberg showed greater similarities than absolute trends, indicating that emissions reductions measures in urban areas are reflected by regional background locations. A comparison of VOC mixing ratios and VOC to CO ratios was undertaken for London and other global cities. Carbon monoxide and VOCs (alkanes greater than C5, alkenes, and aromatics) were found to be strongly correlated (>0.8) in the Annex I countries, whereas only ethene and ethyne were strongly correlated with CO in the non-Annex I countries. The correlation results indicate significant emissions from traffic-related sources in Annex I countries, and a much larger influence of other sources, such as industry and LPG-related sources in non-Annex I countries. Yearly benzene to ethyne ratios for London from 2000 to 2008 ranged from 0.17 to 0.29 and compared well with previous results from US cities and three global megacities.  相似文献   
5.
Chemically active climate compounds are either primary compounds like methane (CH4), removed by oxidation in the atmosphere, or secondary compounds like ozone (O3), sulfate and organic aerosols, both formed and removed in the atmosphere. Man-induced climate–chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate–chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds like O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds like O3, and of particles inducing both direct and indirect effects. Through EU projects like ACCENT, QUANTIFY, and the AeroCom project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric–tropospheric exchange of ozone, more frequent periods with stable conditions favoring pollution build up over industrial areas, enhanced temperature induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 5–10 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modeling of composition changes, access to new observational data has improved modeling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.  相似文献   
6.
The Peroxy Radical Chemical Amplifier (PERCA) technique is a proven method for measurement of ambient levels of peroxy radicals at ground level, but there are no published instances of the technique being used on an aerial platform. Here we describe deployment of a PERCA on the former UK Meteorological Office C-130 Hercules research aircraft. The instrument uses the established method of chemical amplification and conversion of peroxy radicals to nitrogen dioxide (NO2) by doping the sample air-flow matrix with CO and NO, subsequently measuring the NO2 yield with an improved 'Luminox' LMA-3 NO2 detector. NO2 from the amplification chemistry is distinguished from other sources of NO2 reaching the detector by periodically injecting CO approximately 1 s downstream of the NO injection point (termination mode). Chain lengths (CL's) for the amplification chemistry were typically approximately 260 (ground level) to approximately 200 (7,000 m). This variation with altitude is less than the variation associated with the 'age' of the PFA inlet material where the amplification chemistry occurs; CL's of approximately 200 with old tubing to approximately 300 with new clean tubing were typical (ground level values). The CL determinations were made in-flight using an onboard calibration unit based on the 254 nm photolysis of 7.5 to 10 parts per billion (by volume, ppbv) of CH3I in air, producing CH3O2 in a quantitative manner. The noise-equivalent detection limit for peroxy radicals (HO2 + RO2) is 2 parts per trillion (by volume, pptv) at 3,650 m when the background ambient ozone levels are stable, based on a 5 min average of five 30 s amplification cycles and five 30 s termination cycles. This detection limit is a function of several factors but is most seriously degraded when there is large variability in the ambient ozone concentration. This paper describes the instrument design, considers its performance and proposes design improvements. It concludes that the performance of an airborne PERCA in the free troposphere can be superior to that of ground-based instruments when similar sampling frequencies are compared.  相似文献   
7.
This paper describes a new dual-channel PEroxy RadiCal Amplification (PERCA) instrument, which has been designed to improve the time resolution and signal to noise and to reduce the interference caused by variations in ambient ozone concentrations. The instrument was run at the Weybourne Atmospheric Observatory (WAO), North Norfolk, during WAOWEX (Weybourne Atmospheric Observatory Winter Experiment) in January/February 2002 and INSPECTRO (Influence of clouds on the spectral actinic flux in the lower troposphere) in September 2002. The performance of the instrument is assessed and compared to that of a single channel instrument. In particular, it is shown how the precision is greatly improved in fluctuating background ozone conditions. In addition the improved time response of the instrument allows changes in peroxy radical concentrations to be related to rapid changes in nitric oxide concentrations and the ozone photolysis frequency, j(O(1)D).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号